Automated analysis of low-field brain MRI in cerebral malaria

被引:4
|
作者
Tu, Danni [1 ]
Goyal, Manu S. [2 ]
Dworkin, Jordan D. [3 ]
Kampondeni, Samuel [4 ]
Vidal, Lorenna [5 ]
Biondo-Savin, Eric [6 ]
Juvvadi, Sandeep [7 ]
Raghavan, Prashant [8 ]
Nicholas, Jennifer [9 ]
Chetcuti, Karen [10 ]
Clark, Kelly [1 ]
Robert-Fitzgerald, Timothy [1 ]
Satterthwaite, Theodore D. [11 ]
Yushkevich, Paul [12 ]
Davatzikos, Christos [12 ]
Erus, Guray [13 ]
Tustison, Nicholas J. [14 ]
Postels, Douglas G. [15 ]
Taylor, Terrie E. [4 ,16 ]
Small, Dylan S. [17 ]
Shinohara, Russell T. [1 ,13 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Penn Stat Imaging & Visualizat Endeavor PennSIVE, 217 Blockley Hall 423 Guardian Dr, Philadelphia, PA 19104 USA
[2] Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO USA
[3] Columbia Univ, Dept Psychiat, Irving Med Ctr, New York, NY USA
[4] Kamuzu Univ Hlth Sci, Blantyre Malaria Project, Blantyre, Southern Region, Malawi
[5] Childrens Hosp Philadelphia, Dept Radiol, Philadelphia, PA 19104 USA
[6] Michigan State Univ, Dept Radiol, E Lansing, MI 48824 USA
[7] Tenet Diagnost, Hyderabad, India
[8] Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA
[9] Case Western Reserve Univ, Univ Hosp Cleveland, Med Ctr, Dept Radiol, Cleveland, OH 44106 USA
[10] Kamuzu Univ Hlth Sci, Dept Paediat & Child Hlth, Blantyre, Southern Region, Malawi
[11] Univ Penn, Dept Psychiat, Philadelphia, PA 19104 USA
[12] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[13] Univ Penn, Dept Radiol, Ctr Biomed Image Comp & Anal CBICA, Philadelphia, PA 19104 USA
[14] Univ Virginia, Dept Radiol & Med Imaging, Charlottesville, VA USA
[15] George Washington Univ, Childrens Natl Med Ctr, Div Neurol, Washington, DC USA
[16] Michigan State Univ, Coll Osteopath Med, E Lansing, MI 48824 USA
[17] Univ Penn, Dept Stat, 417 Acad Res Bldg 265 South 37th St, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
brain segmentation; data integration; Markov random field; MRI; IMAGE SEGMENTATION; MODEL; STRATEGIES; CHILDREN; COHORT;
D O I
10.1111/biom.13708
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A central challenge of medical imaging studies is to extract biomarkers that characterize disease pathology or outcomes. Modern automated approaches have found tremendous success in high-resolution, high-quality magnetic resonance images. These methods, however, may not translate to low-resolution images acquired on magnetic resonance imaging (MRI) scanners with lower magnetic field strength. In low-resource settings where low-field scanners are more common and there is a shortage of radiologists to manually interpret MRI scans, it is critical to develop automated methods that can augment or replace manual interpretation, while accommodating reduced image quality. We present a fully automated framework for translating radiological diagnostic criteria into image-based biomarkers, inspired by a project in which children with cerebral malaria (CM) were imaged using low-field 0.35 Tesla MRI. We integrate multiatlas label fusion, which leverages high-resolution images from another sample as prior spatial information, with parametric Gaussian hidden Markov models based on image intensities, to create a robust method for determining ventricular cerebrospinal fluid volume. We also propose normalized image intensity and texture measurements to determine the loss of gray-to-white matter tissue differentiation and sulcal effacement. These integrated biomarkers have excellent classification performance for determining severe brain swelling due to CM.
引用
收藏
页码:2417 / 2429
页数:13
相关论文
共 50 条
  • [21] The potential of low-field MRI in abdominal imaging
    Merkle, Elmar M.
    EUROPEAN RADIOLOGY, 2023, 33 (10) : 6981 - 6983
  • [22] Low-Field MRI of Stroke: Challenges and Opportunities
    Bhat, Seema S.
    Fernandes, Tiago T.
    Poojar, Pavan
    Ferreira, Marta da Silva
    Rao, Padma Chennagiri
    Hanumantharaju, Madigondanahalli Chikkamaraiah
    Ogbole, Godwin
    Nunes, Rita G.
    Geethanath, Sairam
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (02) : 372 - 390
  • [23] The potential of low-field MRI in abdominal imaging
    Elmar M. Merkle
    European Radiology, 2023, 33 : 6981 - 6983
  • [24] Low-field MRI: Clinical promise and challenges
    Arnold, Thomas Campbell
    Freeman, Colbey W.
    Litt, Brian
    Stein, Joel M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (01) : 25 - 44
  • [25] Low-field MRI for use in neurological diseases
    Balaji, Sharada
    Wiley, Neale
    Poorman, Megan E.
    Kolind, Shannon H.
    CURRENT OPINION IN NEUROLOGY, 2024, 37 (04) : 381 - 391
  • [26] Development of a mobile low-field MRI scanner
    Deoni, Sean C. L.
    Medeiros, Paul
    Deoni, Alexandra T.
    Burton, Phoebe
    Beauchemin, Jennifer
    D'Sa, Viren
    Boskamp, Eddy
    By, Samantha
    McNulty, Chris
    Mileski, William
    Welch, Brian E.
    Huentelman, Matthew
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [27] Development of a mobile low-field MRI scanner
    Sean C. L. Deoni
    Paul Medeiros
    Alexandra T. Deoni
    Phoebe Burton
    Jennifer Beauchemin
    Viren D’Sa
    Eddy Boskamp
    Samantha By
    Chris McNulty
    William Mileski
    Brian E. Welch
    Matthew Huentelman
    Scientific Reports, 12
  • [28] New challenges and opportunities for low-field MRI
    Anoardo, Esteban
    Rodriguez, Gonzalo G.
    JOURNAL OF MAGNETIC RESONANCE OPEN, 2023, 14-15
  • [29] Accuracy of low-field MRI on meniscal tears
    Chen, H. N.
    Dong, Q. R.
    Wang, Y.
    GENETICS AND MOLECULAR RESEARCH, 2014, 13 (02) : 4267 - 4271
  • [30] Trabecular bone characterization with low-field MRI
    Remy, F
    Guillot, G
    MAGNETIC RESONANCE IMAGING, 1998, 16 (5-6) : 639 - 642