Automated analysis of low-field brain MRI in cerebral malaria

被引:4
|
作者
Tu, Danni [1 ]
Goyal, Manu S. [2 ]
Dworkin, Jordan D. [3 ]
Kampondeni, Samuel [4 ]
Vidal, Lorenna [5 ]
Biondo-Savin, Eric [6 ]
Juvvadi, Sandeep [7 ]
Raghavan, Prashant [8 ]
Nicholas, Jennifer [9 ]
Chetcuti, Karen [10 ]
Clark, Kelly [1 ]
Robert-Fitzgerald, Timothy [1 ]
Satterthwaite, Theodore D. [11 ]
Yushkevich, Paul [12 ]
Davatzikos, Christos [12 ]
Erus, Guray [13 ]
Tustison, Nicholas J. [14 ]
Postels, Douglas G. [15 ]
Taylor, Terrie E. [4 ,16 ]
Small, Dylan S. [17 ]
Shinohara, Russell T. [1 ,13 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Penn Stat Imaging & Visualizat Endeavor PennSIVE, 217 Blockley Hall 423 Guardian Dr, Philadelphia, PA 19104 USA
[2] Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO USA
[3] Columbia Univ, Dept Psychiat, Irving Med Ctr, New York, NY USA
[4] Kamuzu Univ Hlth Sci, Blantyre Malaria Project, Blantyre, Southern Region, Malawi
[5] Childrens Hosp Philadelphia, Dept Radiol, Philadelphia, PA 19104 USA
[6] Michigan State Univ, Dept Radiol, E Lansing, MI 48824 USA
[7] Tenet Diagnost, Hyderabad, India
[8] Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA
[9] Case Western Reserve Univ, Univ Hosp Cleveland, Med Ctr, Dept Radiol, Cleveland, OH 44106 USA
[10] Kamuzu Univ Hlth Sci, Dept Paediat & Child Hlth, Blantyre, Southern Region, Malawi
[11] Univ Penn, Dept Psychiat, Philadelphia, PA 19104 USA
[12] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[13] Univ Penn, Dept Radiol, Ctr Biomed Image Comp & Anal CBICA, Philadelphia, PA 19104 USA
[14] Univ Virginia, Dept Radiol & Med Imaging, Charlottesville, VA USA
[15] George Washington Univ, Childrens Natl Med Ctr, Div Neurol, Washington, DC USA
[16] Michigan State Univ, Coll Osteopath Med, E Lansing, MI 48824 USA
[17] Univ Penn, Dept Stat, 417 Acad Res Bldg 265 South 37th St, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
brain segmentation; data integration; Markov random field; MRI; IMAGE SEGMENTATION; MODEL; STRATEGIES; CHILDREN; COHORT;
D O I
10.1111/biom.13708
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A central challenge of medical imaging studies is to extract biomarkers that characterize disease pathology or outcomes. Modern automated approaches have found tremendous success in high-resolution, high-quality magnetic resonance images. These methods, however, may not translate to low-resolution images acquired on magnetic resonance imaging (MRI) scanners with lower magnetic field strength. In low-resource settings where low-field scanners are more common and there is a shortage of radiologists to manually interpret MRI scans, it is critical to develop automated methods that can augment or replace manual interpretation, while accommodating reduced image quality. We present a fully automated framework for translating radiological diagnostic criteria into image-based biomarkers, inspired by a project in which children with cerebral malaria (CM) were imaged using low-field 0.35 Tesla MRI. We integrate multiatlas label fusion, which leverages high-resolution images from another sample as prior spatial information, with parametric Gaussian hidden Markov models based on image intensities, to create a robust method for determining ventricular cerebrospinal fluid volume. We also propose normalized image intensity and texture measurements to determine the loss of gray-to-white matter tissue differentiation and sulcal effacement. These integrated biomarkers have excellent classification performance for determining severe brain swelling due to CM.
引用
收藏
页码:2417 / 2429
页数:13
相关论文
共 50 条
  • [1] A Low-Field MRI Dataset For Spatiotemporal Analysis of Developing Brain
    Sun, Zhexian
    Huang, Jian
    Ma, Xiaohui
    Liang, Jiawei
    Sun, Chensheng
    Hu, Lanyin
    He, Hongjian
    Yu, Gang
    SCIENTIFIC DATA, 2025, 12 (01)
  • [2] Brain imaging with portable low-field MRI
    W. Taylor Kimberly
    Annabel J. Sorby-Adams
    Andrew G. Webb
    Ed X. Wu
    Rachel Beekman
    Ritvij Bowry
    Steven J. Schiff
    Adam de Havenon
    Francis X. Shen
    Gordon Sze
    Pamela Schaefer
    Juan Eugenio Iglesias
    Matthew S. Rosen
    Kevin N. Sheth
    Nature Reviews Bioengineering, 2023, 1 (9): : 617 - 630
  • [3] Pre-Processing of Low-Field Brain MRI
    Ishak, N. F.
    Logeswaran, R.
    Tan, W. H.
    PROCEEDINGS OF THE 7TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS (CIMMACS '08): RECENT ADVANCES IN COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, 2008, : 41 - 46
  • [4] Low-field portable brain MRI in CNS demyelinating disease
    Mateen, Farrah J.
    Cooley, Clarissa Zimmerman
    Stockmann, Jason P.
    Rice, Dylan R.
    Vogel, Andre C.
    Wald, Lawrence L.
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2021, 51
  • [5] USEFULNESS OF LOW-FIELD INTRAOPERATIVE MRI IN BRAIN TUMOR SURGERY
    Chang, Jong Hee
    Ahn, Jung Yong
    Kim, Dong-Seok
    Kim, Sun Ho
    Lee, Kyu Sung
    NEURO-ONCOLOGY, 2008, 10 (05) : 914 - 914
  • [6] Publisher Correction: Brain imaging with portable low-field MRI
    W. Taylor Kimberly
    Annabel J. Sorby-Adams
    Andrew G. Webb
    Ed X. Wu
    Rachel Beekman
    Ritvij Bowry
    Steven J. Schiff
    Adam de Havenon
    Francis X. Shen
    Gordon Sze
    Pamela Schaefer
    Juan Eugenio Iglesias
    Matthew S. Rosen
    Kevin N. Sheth
    Nature Reviews Bioengineering, 2023, 1 (9): : 680 - 680
  • [7] Modern low-field MRI
    Pogarell, Tobias
    Heiss, Rafael
    Janka, Rolf
    Nagel, Armin M.
    Uder, Michael
    Roemer, Frank W.
    SKELETAL RADIOLOGY, 2024, 53 (09) : 1751 - 1760
  • [8] Low-field MRI pelvimetry
    T. A. Tukeva
    H. J. Aronen
    P. T. Karjalainen
    P. J. Mäkelä
    European Radiology, 1997, 7 : 230 - 234
  • [9] Low-field MRI pelvimetry
    Tukeva, TA
    Aronen, HJ
    Karjalainen, PT
    Makela, PJ
    EUROPEAN RADIOLOGY, 1997, 7 (02) : 230 - 234
  • [10] Low-field musculoskeletal MRI
    Ghazinoor, Shaya
    Crues, John V., III
    Crowley, Chris
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2007, 25 (02) : 234 - 244