Absolute and Relative Depth-Induced Network for RGB-D Salient Object Detection

被引:1
|
作者
Kong, Yuqiu [1 ]
Wang, He [2 ]
Kong, Lingwei [3 ,4 ]
Liu, Yang [1 ]
Yao, Cuili [1 ]
Yin, Baocai [2 ]
机构
[1] Dalian Univ Technol, Sch Innovat & Entrepreneurship, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
[4] JD com, Mkt & Monetizat Ctr, JD Bldg 18 Kechuang 11 St, Beijing 101111, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
RGB-D salient object detection; multi-modal analysis and understanding; multi-modal fusion strategy; ATTENTION; FEATURES;
D O I
10.3390/s23073611
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Detecting salient objects in complicated scenarios is a challenging problem. Except for semantic features from the RGB image, spatial information from the depth image also provides sufficient cues about the object. Therefore, it is crucial to rationally integrate RGB and depth features for the RGB-D salient object detection task. Most existing RGB-D saliency detectors modulate RGB semantic features with absolution depth values. However, they ignore the appearance contrast and structure knowledge indicated by relative depth values between pixels. In this work, we propose a depth-induced network (DIN) for RGB-D salient object detection, to take full advantage of both absolute and relative depth information, and further, enforce the in-depth fusion of the RGB-D cross-modalities. Specifically, an absolute depth-induced module (ADIM) is proposed, to hierarchically integrate absolute depth values and RGB features, to allow the interaction between the appearance and structural information in the encoding stage. A relative depth-induced module (RDIM) is designed, to capture detailed saliency cues, by exploring contrastive and structural information from relative depth values in the decoding stage. By combining the ADIM and RDIM, we can accurately locate salient objects with clear boundaries, even from complex scenes. The proposed DIN is a lightweight network, and the model size is much smaller than that of state-of-the-art algorithms. Extensive experiments on six challenging benchmarks, show that our method outperforms most existing RGB-D salient object detection models.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Depth-Induced Gap-Reducing Network for RGB-D Salient Object Detection: An Interaction, Guidance and Refinement Approach
    Cheng, Xiaolong
    Zheng, Xuan
    Pei, Jialun
    Tang, He
    Lyu, Zehua
    Chen, Chuanbo
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4253 - 4266
  • [2] CDNet: Complementary Depth Network for RGB-D Salient Object Detection
    Jin, Wen-Da
    Xu, Jun
    Han, Qi
    Zhang, Yi
    Cheng, Ming-Ming
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3376 - 3390
  • [3] Depth cue enhancement and guidance network for RGB-D salient object detection
    Li, Xiang
    Zhang, Qing
    Yan, Weiqi
    Dai, Meng
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
  • [4] Depth-aware lightweight network for RGB-D salient object detection
    Ling, Liuyi
    Wang, Yiwen
    Wang, Chengjun
    Xu, Shanyong
    Huang, Yourui
    [J]. IET IMAGE PROCESSING, 2023, 17 (08) : 2350 - 2361
  • [5] Depth-aware inverted refinement network for RGB-D salient object detection
    Gao, Lina
    Liu, Bing
    Fu, Ping
    Xu, Mingzhu
    [J]. NEUROCOMPUTING, 2023, 518 : 507 - 522
  • [6] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [7] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    [J]. NEUROCOMPUTING, 2021, 451 : 95 - 106
  • [8] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1949 - 1961
  • [9] Dynamic Selective Network for RGB-D Salient Object Detection
    Wen, Hongfa
    Yan, Chenggang
    Zhou, Xiaofei
    Cong, Runmin
    Sun, Yaoqi
    Zheng, Bolun
    Zhang, Jiyong
    Bao, Yongjun
    Ding, Guiguang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9179 - 9192
  • [10] DYNAMIC SELECTION NETWORK FOR RGB-D SALIENT OBJECT DETECTION
    Zhou, Jinlin
    Luo, Zhiming
    Li, Shaozi
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 776 - 780