Sparse inference of structural equation modeling with latent variables for diffusion processes

被引:0
|
作者
Kusano, Shogo [1 ]
Uchida, Masayuki [1 ,2 ,3 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Osaka, Japan
[2] Osaka Univ, Ctr Math Modeling & Data Sci MMDS, Osaka, Japan
[3] JST CREST, Osaka, Japan
关键词
Structural equation modeling; Asymptotic theory; High-frequency data; Stochastic differential equation; Quasi-maximum likelihood estimation; Sparse inference; PENALIZED LIKELIHOOD; STATISTICAL-ANALYSIS; ADAPTIVE LASSO; SELECTION; MULTIPLE;
D O I
10.1007/s42081-023-00230-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider structural equation modeling (SEM) with latent variables for diffusion processes based on high-frequency data. The quasi-likelihood estimators for parameters in the SEM are proposed. The goodness-of-fit test is derived from the quasi-likelihood ratio. We also treat sparse inference in the SEM. The goodness-of-fit test for the sparse inference in the SEM is developed. Furthermore, the asymptotic properties of our proposed estimators and test statistics are examined.
引用
收藏
页码:101 / 150
页数:50
相关论文
共 50 条
  • [41] Variables that Affect Language Learning: Structural Equation Modeling
    Fernando Gomez, Juan
    Emiro Restrepo, Jorge
    Diaz Larenas, Claudio
    REICE-REVISTA IBEROAMERICANA SOBRE CALIDAD EFICACIA Y CAMBIO EN EDUCACION, 2022, 20 (03): : 45 - 62
  • [42] MODELING OF DIFFUSION-PROCESSES - NUMERICAL-SOLUTIONS TO THE DIFFUSION EQUATION
    ROMIG, AD
    PEHLIVANTURK, NY
    INAL, OT
    JOURNAL OF METALS, 1988, 40 (07): : A6 - A6
  • [43] The development of the RAM rules for latent variable structural equation modeling
    McArdle, JJ
    CONTEMPORARY PSYCHOMETRICS: A FESTSCHRIFT FOR RODERICK P. MCDONALD, 2005, : 225 - 273
  • [44] Exploratory Latent Growth Models in the Structural Equation Modeling Framework
    Grimm, Kevin J.
    Steele, Joel S.
    Ram, Nilam
    Nesselroade, John R.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2013, 20 (04) : 568 - 591
  • [45] LATENT VARIABLE STRUCTURAL EQUATION MODELING WITH CATEGORICAL-DATA
    MUTHEN, B
    JOURNAL OF ECONOMETRICS, 1983, 22 (1-2) : 43 - 65
  • [46] Alternative Multiple Imputation Inference for Categorical Structural Equation Modeling
    Chung, Seungwon
    Cai, Li
    MULTIVARIATE BEHAVIORAL RESEARCH, 2019, 54 (03) : 323 - 337
  • [47] Alternative Multiple Imputation Inference for Categorical Structural Equation Modeling
    Chung, Seungwon
    Cai, Li
    MULTIVARIATE BEHAVIORAL RESEARCH, 2018, 53 (01) : 148 - 148
  • [48] MEDIATION BY STRUCTURAL EQUATION MODELING OR CAUSAL INFERENCE: WHAT IS THE DIFFERENCE?
    De Stavola, Bianca
    Daniel, Rhian
    Ploubidis, George
    Micali, Nadia
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 : S134 - S134
  • [49] strum: an R package for structural modeling of latent variables for general pedigrees
    Song, Yeunjoo E.
    Stein, Catherine M.
    Morris, Nathan J.
    BMC GENETICS, 2015, 16
  • [50] Predictive Inference Using Latent Variables with Covariates
    Schofield, Lynne Steuerle
    Junker, Brian
    Taylor, Lowell J.
    Black, Dan A.
    PSYCHOMETRIKA, 2015, 80 (03) : 727 - 747