Predictive Inference Using Latent Variables with Covariates

被引:14
|
作者
Schofield, Lynne Steuerle [1 ]
Junker, Brian [2 ]
Taylor, Lowell J. [2 ]
Black, Dan A. [3 ]
机构
[1] Swarthmore Coll, Swarthmore, PA 19081 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Univ Chicago, Chicago, IL 60637 USA
关键词
latent variable analysis; NAEP; plausible valuemethodology; marginal estimation procedures; MULTIPLE-IMPUTATION;
D O I
10.1007/s11336-014-9415-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Plausible values (PVs) are a standard multiple imputation tool for analysis of large education survey data, which measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts' model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations model of Schofield (Modeling measurement error when using cognitive test scores in social science research. Doctoral dissertation. Department of Statistics and Heinz College of Public Policy. Pittsburgh, PA: Carnegie Mellon University, 2008).
引用
收藏
页码:727 / 747
页数:21
相关论文
共 50 条
  • [1] Predictive Inference Using Latent Variables with Covariates
    Lynne Steuerle Schofield
    Brian Junker
    Lowell J. Taylor
    Dan A. Black
    [J]. Psychometrika, 2015, 80 : 727 - 747
  • [2] Set inference in latent variables models
    Henry, Marc
    Mourifie, Ismael
    [J]. ECONOMETRICS JOURNAL, 2013, 16 (01): : S93 - S105
  • [3] Efficient Inference for Nonparametric Hawkes Processes Using Auxiliary Latent Variables
    Zhou, Feng
    Li, Zhidong
    Fan, Xuhui
    Wang, Yang
    Sowmya, Arcot
    Chen, Fang
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [4] Efficient inference for nonparametric hawkes processes using auxiliary latent variables
    Zhou, Feng
    Li, Zhidong
    Fan, Xuhui
    Wang, Yang
    Sowmya, Arcot
    Chen, Fang
    [J]. Journal of Machine Learning Research, 2020, 21
  • [5] The Inflation Technique for Causal Inference with Latent Variables
    Wolfe, Elie
    Spekkens, Robert W.
    Fritz, Tobias
    [J]. JOURNAL OF CAUSAL INFERENCE, 2019, 7 (02)
  • [6] Causal Inference in Longitudinal Studies Using Causal Bayesian Network with Latent Variables
    Phat Huynh
    Irish, Leah
    Yadav, Om Prakash
    Setty, Arveity
    Le, Trung Tim Q.
    [J]. 2022 68TH ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS 2022), 2022,
  • [7] Inference using latent variables for mixtures of distributions for censored data with partial identification
    Contreras-Cristán, A
    Gutiérrez-Peña, E
    O'Reilly, F
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (04) : 749 - 774
  • [8] Bayesian Inference for Logistic Models Using Polya-Gamma Latent Variables
    Polson, Nicholas G.
    Scott, James G.
    Windle, Jesse
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (504) : 1339 - 1349
  • [9] Bayesian analysis of structural equation models with nonlinear covariates and latent variables
    Song, Xin-Yuan
    Lee, Sik-Yum
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2006, 41 (03) : 337 - 365
  • [10] Causal graphical models with latent variables: Learning and inference
    Meganck, Stijn
    Leray, Philippe
    Manderick, Bernard
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2007, 4724 : 5 - +