Predictive Inference Using Latent Variables with Covariates

被引:14
|
作者
Schofield, Lynne Steuerle [1 ]
Junker, Brian [2 ]
Taylor, Lowell J. [2 ]
Black, Dan A. [3 ]
机构
[1] Swarthmore Coll, Swarthmore, PA 19081 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Univ Chicago, Chicago, IL 60637 USA
关键词
latent variable analysis; NAEP; plausible valuemethodology; marginal estimation procedures; MULTIPLE-IMPUTATION;
D O I
10.1007/s11336-014-9415-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Plausible values (PVs) are a standard multiple imputation tool for analysis of large education survey data, which measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts' model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations model of Schofield (Modeling measurement error when using cognitive test scores in social science research. Doctoral dissertation. Department of Statistics and Heinz College of Public Policy. Pittsburgh, PA: Carnegie Mellon University, 2008).
引用
收藏
页码:727 / 747
页数:21
相关论文
共 50 条
  • [21] Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables
    Lee, Sik-Yum
    Song, Xin-Yuan
    Tang, Nian-Sheng
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2007, 14 (03) : 404 - 434
  • [22] Approximate variational inference based on a finite sample of Gaussian latent variables
    Gianniotis, Nikolaos
    Schnoerr, Christoph
    Molkenthin, Christian
    Bora, Sanjay Singh
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (02) : 475 - 485
  • [23] Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables
    Christiansen, Rune
    Peters, Jonas
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [24] Sparse inference of structural equation modeling with latent variables for diffusion processes
    Kusano, Shogo
    Uchida, Masayuki
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2024, 7 (01) : 101 - 150
  • [25] Switching regression models and causal inference in the presence of discrete latent variables
    Christiansen, Rune
    Peters, Jonas
    [J]. Journal of Machine Learning Research, 2020, 21
  • [26] Approximate Bayesian inference in spatial GLMM with skew normal latent variables
    Hosseini, Fatemeh
    Eidsvik, Jo
    Mohammadzadeh, Mohsen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (04) : 1791 - 1806
  • [27] Approximate variational inference based on a finite sample of Gaussian latent variables
    Nikolaos Gianniotis
    Christoph Schnörr
    Christian Molkenthin
    Sanjay Singh Bora
    [J]. Pattern Analysis and Applications, 2016, 19 : 475 - 485
  • [28] Using monotonicity restrictions to identify models with partially latent covariates
    Bang, Minji
    Gao, Wayne Yuan
    Postlewaite, Andrew
    Sieg, Holger
    [J]. JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 892 - 921
  • [29] Inference for the dimension of a regression relationship using pseudo-covariates
    Huang, Shih-Hao
    Shedden, Kerby
    Chang, Hsin-wen
    [J]. BIOMETRICS, 2023, 79 (03) : 2394 - 2403
  • [30] Bayesian estimation of a multilevel multidimensional item response model using auxiliary variables method: an exploration of the correlation between multiple latent variables and covariates in hierarchical data
    Zhang, Jiwei
    Lu, Jing
    Tao, Jian
    [J]. STATISTICS AND ITS INTERFACE, 2019, 12 (01) : 35 - 48