Dispersive Estimates for Linearized Water Wave-Type Equations in Rd

被引:0
|
作者
Deneke, Tilahun [1 ]
Dufera, Tamirat T. T. [2 ]
Tesfahun, Achenef [2 ]
机构
[1] Nazarbayev Univ, Dept Math, Qabanbai Batyr Ave 53, Nur Sultan 010000, Kazakhstan
[2] Adama Univ Sci & Technol, Dept Math, Adama, Ethiopia
来源
ANNALES HENRI POINCARE | 2023年 / 24卷 / 11期
关键词
WELL-POSEDNESS; WHITHAM; SYSTEM;
D O I
10.1007/s00023-023-01322-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a L-x(1)(R-d)-L-x(infinity)(R-d) decay estimate of order O ( t(-d/2)) for the linear propagators [GRAPHICS] . with a loss of 3d/4 or d/4-derivatives in the case ss = 0 or ss = 1, respectively. These linear propagators are known to be associated with the linearized water wave equations, where the parameter ss measures surface tension effects. As an application, we prove low regularity well-posedness for a Whitham-Boussinesq-type system in R-d, d >= 2. This generalizes a recent result by Dinvay, Selberg and the third author where they proved low regularity well-posedness in R and R-2.
引用
收藏
页码:3741 / 3761
页数:21
相关论文
共 50 条
  • [21] A Dispersive Estimate for the Linearized Water-Waves Equations in Finite Depth
    Benoit, Mesognon-Gireau
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2017, 19 (03) : 469 - 500
  • [22] A Dispersive Estimate for the Linearized Water-Waves Equations in Finite Depth
    Mésognon-Gireau Benoît
    Journal of Mathematical Fluid Mechanics, 2017, 19 : 469 - 500
  • [23] Norm saturating property of time optimal controls for wave-type equations
    Loheac, J.
    Zuazua, E.
    IFAC PAPERSONLINE, 2016, 49 (08): : 37 - 42
  • [24] Global parametrices and dispersive estimates for variable coefficient wave equations
    Metcalfe, Jason
    Tataru, Daniel
    MATHEMATISCHE ANNALEN, 2012, 353 (04) : 1183 - 1237
  • [25] Global parametrices and dispersive estimates for variable coefficient wave equations
    Jason Metcalfe
    Daniel Tataru
    Mathematische Annalen, 2012, 353 : 1183 - 1237
  • [26] THEOREM ON RECIPROCITY FOR WAVE-TYPE EQUATIONS OF THERMO-PIEZO-ELECTRICITY
    KALISKI, S
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1966, 14 (04): : 337 - &
  • [27] Unified error analysis for nonconforming space discretizations of wave-type equations
    Hipp, David
    Hochbruck, Marlis
    Stohrer, Christian
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (03) : 1206 - 1245
  • [28] Hamiltonian Structures of Wave-Type Equations Compatible with the Finite Element Exterior Calculus
    Yaguchi, Takaharu
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [29] WELL-POSEDNESS AND STABILITY FOR SEMILINEAR WAVE-TYPE EQUATIONS WITH TIME DELAY
    Paolucci, Alessandro
    Pignotti, Cristina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (06): : 1561 - 1571
  • [30] Dispersive estimates for 2D-wave equations with critical potentials
    Fanelli, Luca
    Zhang, Junyong
    Zheng, Jigiang
    ADVANCES IN MATHEMATICS, 2022, 400