Norm saturating property of time optimal controls for wave-type equations

被引:2
|
作者
Loheac, J. [1 ]
Zuazua, E. [2 ]
机构
[1] LUNAM Univ, IRCCyN, UMR 6597, CNRS,Inst Rech Commun & Cybernet Nantes,Ecole Min, 4 Rue Alfred Kastler, F-44307 Nantes, France
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 08期
关键词
Wave equations; Optimal control; Open loop control systems; Point-to-point control; Reachable states; Norm-optimal controls; Minimal control time; BANG-BANG PRINCIPLE; HEAT-EQUATION; MINIMAL CONTROL; SYSTEMS;
D O I
10.1016/j.ifacol.2016.07.415
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a time optimal control problem with point target for a class of infinite dimensional systems governed by abstract wave operators. In order to ensure the existence of a time optimal control, we consider controls of energy bounded by a prescribed constant E > 0. Even when this control constraint is absent, in many situations, due to the hyperbolicity of the system under consideration, a target point cannot be reached in arbitrarily small time and there exists a minimal universal controllability time T-* > 0, so that for every points y(0) and y(1) and every time T > T-*, there exists a control steering y(0) to y(1) in time T. Simultaneously this may be impossible if T < T-* for some particular choices of y(0) and y(1). In this note we point out the impact of the strict positivity of the minimal time T-* on the structure of the norm of time optimal controls. In other words, the question we address is the following: If T is the minimal time, what is the L-2-norm of the associated time optimal control? For different values of y(0), y(1) and E, we can have tau <= T-* or tau > T-*. If tau > T-*, the time optimal control is unique, given by an adjoint problem and its L-2-norm is E, in the classical sense. In this case, the time optimal control is also a norm optimal control. But when tau < T-*, we show, analyzing the string equation with Dirichlet boundary control, that, surprisingly, there exist time optimal controls which are not of maximal norm E. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:37 / 42
页数:6
相关论文
共 50 条
  • [1] Wave-type equations of low regularity
    Hanel, Clemens
    APPLICABLE ANALYSIS, 2011, 90 (11) : 1691 - 1705
  • [2] SATURATING AND TIME-OPTIMAL FEEDBACK CONTROLS
    BIKDASH, M
    CLIFF, EM
    NAYFEH, AH
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1993, 16 (03) : 541 - 548
  • [3] EXPONENTIAL INTEGRATORS FOR QUASILINEAR WAVE-TYPE EQUATIONS
    Doerich, Benjamin
    Hochbruck, Marlis
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (03) : 1472 - 1493
  • [4] WELL-POSEDNESS AND STABILITY FOR SEMILINEAR WAVE-TYPE EQUATIONS WITH TIME DELAY
    Paolucci, Alessandro
    Pignotti, Cristina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (06): : 1561 - 1571
  • [5] Spatial finite difference approximations for wave-type equations
    Fornberg, B
    Ghrist, M
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) : 105 - 130
  • [6] Theorems of global existence for wave-type semilinear equations
    Lucente, S
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3A (03): : 363 - 366
  • [7] WAVE-TYPE EQUATIONS OF THERMO-MAGNETO-MICROELASTICITY
    KALISKI, S
    NOWACKI, W
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1970, 18 (04): : 277 - &
  • [8] Time and norm optimal controls for linear parabolic equations: Necessary and sufficient conditions
    Fattorini, HO
    CONTROL AND ESTIMATION OF DISTRIBUTED PARAMETER SYSTEMS, 2003, 143 : 151 - 168
  • [9] Optimal Actuator Location of the Norm Optimal Controls for Degenerate Parabolic Equations
    Liu, Yuanhang
    Wu, Weijia
    Yang, Donghui
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 202 (03) : 1326 - 1358
  • [10] QUASICLASSICAL TRAJECTORY-COHERENT STATES FOR WAVE-TYPE EQUATIONS
    BELOV, VV
    KARAVAYEV, AG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1989, 32 (05): : 43 - 48