GROUNDWATER LEVEL PREDICTION USING DEEP RECURRENT NEURAL NETWORKS AND UNCERTAINTY ASSESSMENT

被引:1
|
作者
Eghrari, Z. [1 ]
Delavar, M. R. [2 ]
Zare, M. [3 ]
Mousavi, M. [1 ]
Nazari, B. [4 ]
Ghaffarian, S. [5 ]
机构
[1] Univ Tehran, Sch Surveying & Geospatial Engn, Coll Engn, Tehran, Iran
[2] Univ Tehran, Sch Surveying & Geospatial Eng, Coll Engn, Ctr Excellence Geomat Eng Disaster Management & L, Tehran, Iran
[3] Int Inst Earthquake Engn & Seismol, Tehran, Iran
[4] Univ Tehran, Sch Surveying & Geospatial Engn, GIS Dept, Coll Engn, Tehran, Iran
[5] UCL, Inst Risk & Disaster Reduct, London, England
关键词
Groundwater Level; Climate Change; GIS; Deep Learning; LSTM; Uncertainty; MODELS; RMSE;
D O I
10.5194/isprs-annals-X-1-W1-2023-493-2023
中图分类号
K85 [文物考古];
学科分类号
0601 ;
摘要
Groundwater is one of the most important sources of regional water supply for humans. In recent years, several factors have contributed to a significant decline in groundwater levels (GWL) in certain regions. As a result of climate change, such as temperature increase, rainfall decrease, and changes in relative humidity, it is necessary to investigate and model the effects of these factors on GWL. Although a number of researches have been conducted on GWL modeling with machine learning (ML) and deep learning (DL) algorithms, only a limited number of studies have reported model uncertainty. In this paper, GWL modeling of some piezometric wells has been conducted by considering the effects of the meteorological parameters with Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. The models were trained on one piezometric well data and predictions were executed on six other wells. To perform an uncertainty assessment, the models were run 10 times and their means were calculated. Subsequently, their standard deviations were considered to evaluate the outcomes. In addition, the prediction power of the models was validated using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), and R-Squared (R-2). Finally, for all the six wells that did not participate in the training phase, the prediction functions of the trained models were run 10 times and their accuracy was assessed. The results indicate that LSTM (R-2=95.6895, RMSE=0.4744 m, NRMSE=0.0558, MAE=0.3383 m) had a better performance compared to that of GRU (R-2=95.2433, RMSE=0.4984 m, NRMSE=0.0586, MAE=0.3658 m) on the GWL modeling.
引用
收藏
页码:493 / 500
页数:8
相关论文
共 50 条
  • [31] DNA Steganalysis Using Deep Recurrent Neural Networks
    Bae, Ho
    Lee, Byunghan
    Kwon, Sunyoung
    Yoon, Sungroh
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2019, 2019, : 88 - 99
  • [32] Relationship between prediction accuracy and uncertainty in compound potency prediction using deep neural networks and control models
    Roth, Jannik P.
    Bajorath, Juergen
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [33] Sequential prediction of quantitative health risk assessment for the fine particulate matter in an underground facility using deep recurrent neural networks
    Loy-Benitez, Jorge
    Vilela, Paulina
    Li, Qian
    Yoo, ChangKyoo
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2019, 169 : 316 - 324
  • [34] On human motion prediction using recurrent neural networks
    Martinez, Julieta
    Black, Michael J.
    Romero, Javier
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4674 - 4683
  • [35] Network Traffic Prediction Using Recurrent Neural Networks
    Ramakrishnan, Nipun
    Soni, Tarun
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 187 - 193
  • [36] Land subsidence prediction using recurrent neural networks
    Kumar, Sunil
    Kumar, Dheeraj
    Donta, Praveen Kumar
    Amgoth, Tarachand
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (02) : 373 - 388
  • [37] Internet Traffic Prediction Using Recurrent Neural Networks
    Dodan M.E.
    Vien Q.-T.
    Nguyen T.T.
    EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 2022, 9 (04)
  • [38] Transient Phenomena Prediction Using Recurrent Neural Networks
    Guerra, Jonathan
    Klotz, Patricia
    Laurent, Beatrice
    Gamboa, Fabrice
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [39] Land subsidence prediction using recurrent neural networks
    Sunil Kumar
    Dheeraj Kumar
    Praveen Kumar Donta
    Tarachand Amgoth
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 373 - 388
  • [40] Cellular Traffic Prediction using Recurrent Neural Networks
    Jaffry, Shan
    Hasan, Syed Faraz
    2020 IEEE 5TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATION TECHNOLOGIES (ISTT), 2020, : 94 - 98