GROUNDWATER LEVEL PREDICTION USING DEEP RECURRENT NEURAL NETWORKS AND UNCERTAINTY ASSESSMENT

被引:1
|
作者
Eghrari, Z. [1 ]
Delavar, M. R. [2 ]
Zare, M. [3 ]
Mousavi, M. [1 ]
Nazari, B. [4 ]
Ghaffarian, S. [5 ]
机构
[1] Univ Tehran, Sch Surveying & Geospatial Engn, Coll Engn, Tehran, Iran
[2] Univ Tehran, Sch Surveying & Geospatial Eng, Coll Engn, Ctr Excellence Geomat Eng Disaster Management & L, Tehran, Iran
[3] Int Inst Earthquake Engn & Seismol, Tehran, Iran
[4] Univ Tehran, Sch Surveying & Geospatial Engn, GIS Dept, Coll Engn, Tehran, Iran
[5] UCL, Inst Risk & Disaster Reduct, London, England
关键词
Groundwater Level; Climate Change; GIS; Deep Learning; LSTM; Uncertainty; MODELS; RMSE;
D O I
10.5194/isprs-annals-X-1-W1-2023-493-2023
中图分类号
K85 [文物考古];
学科分类号
0601 ;
摘要
Groundwater is one of the most important sources of regional water supply for humans. In recent years, several factors have contributed to a significant decline in groundwater levels (GWL) in certain regions. As a result of climate change, such as temperature increase, rainfall decrease, and changes in relative humidity, it is necessary to investigate and model the effects of these factors on GWL. Although a number of researches have been conducted on GWL modeling with machine learning (ML) and deep learning (DL) algorithms, only a limited number of studies have reported model uncertainty. In this paper, GWL modeling of some piezometric wells has been conducted by considering the effects of the meteorological parameters with Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. The models were trained on one piezometric well data and predictions were executed on six other wells. To perform an uncertainty assessment, the models were run 10 times and their means were calculated. Subsequently, their standard deviations were considered to evaluate the outcomes. In addition, the prediction power of the models was validated using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), and R-Squared (R-2). Finally, for all the six wells that did not participate in the training phase, the prediction functions of the trained models were run 10 times and their accuracy was assessed. The results indicate that LSTM (R-2=95.6895, RMSE=0.4744 m, NRMSE=0.0558, MAE=0.3383 m) had a better performance compared to that of GRU (R-2=95.2433, RMSE=0.4984 m, NRMSE=0.0586, MAE=0.3658 m) on the GWL modeling.
引用
收藏
页码:493 / 500
页数:8
相关论文
共 50 条
  • [21] PREDICTION OF DEEP ICE LAYER THICKNESS USING ADAPTIVE RECURRENT GRAPH NEURAL NETWORKS
    Zalatan, Benjamin
    Rahnemoonfar, Maryam
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2835 - 2839
  • [22] Prediction of groundwater drawdown using artificial neural networks
    Vahid Gholami
    Hossein Sahour
    Environmental Science and Pollution Research, 2022, 29 : 33544 - 33557
  • [23] Prediction of groundwater drawdown using artificial neural networks
    Gholami, Vahid
    Sahour, Hossein
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (22) : 33544 - 33557
  • [24] Prediction of Station Level Demand in a Bike Sharing System using Recurrent Neural Networks
    Chen, Po-Chuan
    Hsieh, He-Yen
    Sigalingging, Xanno Kharis
    Chen, Yan-Ru
    Leu, Jenq-Shiou
    2017 IEEE 85TH VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2017,
  • [25] Groundwater Level Predictions Using Artificial Neural Networks
    毛晓敏
    尚松浩
    刘翔
    TsinghuaScienceandTechnology, 2002, (06) : 574 - 579
  • [26] Forecasting groundwater level using artificial neural networks
    Sreekanth, P. D.
    Geethanjali, N.
    Sreedevi, P. D.
    Ahmed, Shakeel
    Kumar, N. Ravi
    Jayanthi, P. D. Kamala
    CURRENT SCIENCE, 2009, 96 (07): : 933 - 939
  • [27] Groundwater level forecasting using artificial neural networks
    Daliakopoulos, IN
    Coulibaly, P
    Tsanis, IK
    JOURNAL OF HYDROLOGY, 2005, 309 (1-4) : 229 - 240
  • [28] Rainfall Prediction using Spatial Convolutional Neural Networks and Recurrent Neural Networks
    Lestari, Nadia Dwi Puji
    Djamal, Esmeralda Contessa
    2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 12 - 17
  • [29] Rainfall Prediction using Spatial Convolutional Neural Networks and Recurrent Neural Networks
    Lestari, Nadia Dwi Puji
    Djamal, Esmeralda Contessa
    2022 International Conference on Data Science and Its Applications, ICoDSA 2022, 2022, : 12 - 17
  • [30] Application of Deep Recurrent Neural Networks for Prediction of User Behavior in Tor Networks
    Ishitaki, Taro
    Obukata, Ryoichiro
    Oda, Tetsuya
    Barolli, Leonard
    2017 31ST IEEE INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (IEEE WAINA 2017), 2017, : 238 - 243