Hybrid adaptive deep learning classifier for early detection of diabetic retinopathy using optimal feature extraction and classification

被引:2
|
作者
Hemanth, S. V. [1 ]
Alagarsamy, Saravanan [1 ]
机构
[1] Kalasalingam Acad Res & Educ, Dept Comp Sci & Engn, Krishnankoil, Tamil Nadu, India
关键词
Diabetic retinopathy; Preprocessing; Segmentation; Feature extraction; Feature selection; Classification; COMPUTER-AIDED DIAGNOSIS; RETINAL FUNDUS IMAGES; AUTOMATED DETECTION; SEGMENTATION; LESIONS;
D O I
10.1007/s40200-023-01220-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectivesDiabetic retinopathy (DR) is one of the leading causes of blindness. It is important to use a comprehensive learning method to identify the DR. However, comprehensive learning methods often rely heavily on encrypted data, which can be costly and time consuming. Also, the DR function is not displayed and is scattered in the high-definition image below.MethodsTherefore, learning how to distribute such DR functions is a big challenge. In this work, we proposed a hybrid adaptive deep learning classifier for early detection of diabetic retinopathy (HADL-DR). First, we provide an improved multichannel-based generative adversarial network (MGAN) with semi-maintenance to detect blood vessels segmentation.ResultsBy reducing the reliance on the encoded data, the following high-resolution images can be used to detect the indivisible features of some semi-observed MGAN references. Scale invariant feature transform (SIFT) function is then extracted and the best function is selected using the improved sequential approximation optimization (SAO) algorithm. After that, a hybrid recurrent neural network with long short-term memory (RNN-LSTM) is utilized for DR classification. The proposed RNN-LSTM classifier evaluated through standard benchmark Kaggle and Messidor datasets.ConclusionFinally, the simulation results are compared with the existing state-of-art classifiers in terms of accuracy, precision, recall, f-measure and area under cover (AUC), it is seen that more successful results are obtained.
引用
收藏
页码:881 / 895
页数:15
相关论文
共 50 条
  • [11] A diagnosis model for detection and classification of diabetic retinopathy using deep learning
    Syed, Saba Raoof
    Durai, M. A. Saleem
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2023, 12 (01):
  • [12] A diagnosis model for detection and classification of diabetic retinopathy using deep learning
    Saba Raoof Syed
    Saleem Durai M A
    Network Modeling Analysis in Health Informatics and Bioinformatics, 12
  • [13] Diabetic Retinopathy Classification Using Deep Learning
    Sathwik A.S.
    Agarwal R.
    Ajith Jubilson E.
    Basa S.S.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9
  • [14] Diabetic Retinopathy Detection based on Hybrid Feature Extraction and SVM
    Nazir, Tahira
    Javed, Ali
    Masood, Momina
    Rashid, Junaid
    Kanwal, Samira
    2019 13TH INTERNATIONAL CONFERENCE ON MATHEMATICS, ACTUARIAL SCIENCE, COMPUTER SCIENCE AND STATISTICS (MACS-13), 2019,
  • [15] Classification of Retinal Images with Deep Learning for Early Detection of Diabetic Retinopathy Disease
    Yalcin, Nursel
    Alver, Seyfullah
    Uluhatun, Necla
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [16] Deep Learning for Detection and Severity Classification of Diabetic Retinopathy
    Jain, Anuj
    Jalui, Arnav
    Jasani, Jahanvi
    Lahoti, Yash
    Karani, Ruhina
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [17] Hybrid Deep Transfer Learning and Feature Fusion Architecture for Diabetic Retinopathy Classification and Severity Grading
    Anand, M.
    Sundaram, A. Meenakshi
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (09) : 2623 - 2633
  • [18] Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC)
    Dolly Das
    Saroj Kumar Biswas
    Sivaji Bandyopadhyay
    Multimedia Tools and Applications, 2023, 82 : 29943 - 30001
  • [19] Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC)
    Das, Dolly
    Biswas, Saroj Kumar
    Bandyopadhyay, Sivaji
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (19) : 29943 - 30001
  • [20] Optimal Feature Selection for Chronic Kidney Disease Classification using Deep Learning Classifier
    Shankar, K.
    Manickam, P.
    Devika, G.
    Ilayaraja, M.
    2018 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC 2018), 2018, : 314 - 318