Density of photonic states in aperiodic structures

被引:6
|
作者
Chistyakov, Vladislav A. [1 ]
Sidorenko, Mikhail S. [1 ]
Sayanskiy, Andrey D. [1 ]
V. Rybin, Mikhail [1 ,2 ]
机构
[1] ITMO Univ, Sch Phys & Engn, St Petersburg 197101, Russia
[2] Ioffe Inst, St Petersburg 194021, Russia
基金
俄罗斯科学基金会;
关键词
CRYSTALS; LOCALIZATION; EMISSION; EXPOSURE; DESIGN; LIGHT;
D O I
10.1103/PhysRevB.107.014205
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Periodicity is usually assumed to be the necessary and sufficient condition for the formation of band gaps, i.e., energy bands with a suppressed density of states. Here, we check this premise by analyzing the band gap properties of three structures that differ in the degree of periodicity and ordering. We consider a photonic crystal, disordered lattice, and ordered but nonperiodic quasicrystalline structure. A real-space metric allows us to compare the degree of periodicity of these different structures. Using this metric, we reveal that the disordered lattice and the ordered quasicrystal can be attributed to the same group of material structures. We examine the density of their photonic states both theoretically and experimentally. The analysis reveals that despite their dramatically different degrees of periodicity, the photonic crystal and the quasicrystalline structure demonstrate an almost similar suppression of the density of states. Our results give new insight into the physical mechanisms resulting in the formation of band gaps.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Density of states functions for photonic crystals
    McPhedran, RC
    Botten, LC
    McOrist, J
    Asatryan, AA
    de Sterke, CM
    Nicorovici, NA
    PHYSICAL REVIEW E, 2004, 69 (01): : 16
  • [22] The density of states in quasiperiodic photonic crystals
    Wang, YQ
    Cheng, BY
    Zhang, DZ
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (45) : 7675 - 7680
  • [23] Bound states in the continuum in photonic structures
    Koshelev, K. L.
    Sadrieva, Z. F.
    Shcherbakov, A. A.
    Kivshar, Yu S.
    Bogdanov, A. A.
    PHYSICS-USPEKHI, 2023, 66 (05) : 494 - 517
  • [24] Photonic density of states maps for design of photonic crystal devices
    Sukhoivanov, I. A.
    Guryev, I. V.
    Lucio, J. A. Andrade
    Mendez, E. Alvarado
    Trejo-Duran, M.
    Torres-Cisneros, M.
    MICROELECTRONICS JOURNAL, 2008, 39 (3-4) : 685 - 689
  • [25] Nanoscale Imaging of Photonic Densities of States in Finite Photonic Structures
    Cha, Judy J.
    Smith, Eric
    Couillard, Martin
    Muller, David A.
    MICROSCOPY AND MICROANALYSIS, 2009, 15 : 452 - U1821
  • [26] Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures
    Boriskina, Svetlana V.
    Gopinath, Ashwin
    Dal Negro, Luca
    OPTICS EXPRESS, 2008, 16 (23) : 18813 - 18826
  • [27] Aperiodic-Fourier modal method for analysis of body-of-revolution photonic structures
    Bigourdan, Florian
    Hugonin, Jean-Paul
    Lalanne, Philippe
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (06) : 1303 - 1311
  • [28] Light Localization and Label-Free Colorimetric Sensing with Deterministic Aperiodic Photonic Structures
    Boriskina, Svetlana V.
    Gopinath, Ashwin
    Lee, Sylvanus
    Dal Negro, Luca
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 2039 - 2039
  • [29] Sensitive label-free biosensing using critical modes in aperiodic photonic structures
    Boriskina, Svetlana V.
    Dal Negro, Luca
    OPTICS EXPRESS, 2008, 16 (17) : 12511 - 12522
  • [30] DENSITY OF STATES IN MDS STRUCTURES
    ZYUZIN, AY
    JETP LETTERS, 1981, 33 (07) : 360 - 362