Deep reinforcement learning based optimization of automated guided vehicle time and energy consumption in a container terminal

被引:23
|
作者
Drungilas, Darius [1 ]
Kurmis, Mindaugas [1 ]
Senulis, Audrius [1 ]
Lukosius, Zydrunas [1 ]
Andziulis, Arunas [1 ]
Januteniene, Jolanta [1 ]
Bogdevicius, Marijonas [1 ]
Jankunas, Valdas [1 ]
Voznak, Miroslav [1 ,2 ]
机构
[1] Klaipeda Univ, H Manto Str 84, LT-92294 Klaipeda, Lithuania
[2] VSB Tech Univ Ostrava, Dept Telecommun, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic
关键词
Automated guided vehicle (AGV); Container terminal; Energy consumption; Deep reinforcement learning; Modeling; Optimization; STRATEGIES; MANAGEMENT; EFFICIENCY; BATTERY; PORT;
D O I
10.1016/j.aej.2022.12.057
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The energy efficiency of port container terminal equipment and the reduction of CO2 emissions are among one of the biggest challenges facing every seaport in the world. The article pre-sents the modeling of the container transportation process in a terminal from the quay crane to the stack using battery-powered Automated Guided Vehicle (AGV) to estimate the energy consump-tion parameters. An AGV speed control algorithm based on Deep Reinforcement Learning (DRL) is proposed to optimize the energy consumption of container transportation. The results obtained and compared with real transportation measurements showed that the proposed DRL-based approach dynamically changing the driving speed of the AGV reduces energy consumption by 4.6%. The obtained results of the research provide the prerequisites for further research in order to find optimal strategies for autonomous vehicle movement including context awareness and infor-mation sharing with other vehicles in the terminal.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:397 / 407
页数:11
相关论文
共 50 条
  • [31] Deep reinforcement learning based low energy consumption scheduling approach design for urban electric logistics vehicle networks
    Sun, Pengfei
    He, Jingbo
    Wan, Jianxiong
    Guan, Yuxin
    Liu, Dongjiang
    Su, Xiaoming
    Li, Leixiao
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [32] Energy Management Strategy for a Hybrid Electric Vehicle Based on Deep Reinforcement Learning
    Hu, Yue
    Li, Weimin
    Xu, Kun
    Zahid, Taimoor
    Qin, Feiyan
    Li, Chenming
    APPLIED SCIENCES-BASEL, 2018, 8 (02):
  • [33] Energy Storage Scheduling Optimization Strategy Based on Deep Reinforcement Learning
    Hou, Shixi
    Han, Jienan
    Liu, Xiangjiang
    Guo, Ruoshan
    Chu, Yundi
    ADVANCES IN NEURAL NETWORKS-ISNN 2024, 2024, 14827 : 33 - 44
  • [34] Energy Efficiency Optimization in Heterogeneous Networks Based on Deep Reinforcement Learning
    Shi, Daoping
    Tian, Feng
    Wu, Shengchen
    2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,
  • [35] Optimization Strategy Based on Deep Reinforcement Learning for Home Energy Management
    Liu, Yuankun
    Zhang, Dongxia
    Gooi, Hoay Beng
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2020, 6 (03): : 572 - 582
  • [36] Research on Automated Container Terminal Assignment Problem Based on Multi-agent Architecture Reinforcement Learning Algorithm
    Jiang, Lu
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 584 - 589
  • [37] Estimation of Energy Consumption on Arbitrary Trajectories of an Omnidirectional Automated Guided Vehicle
    Stampa, Merlin
    Roehrig, Christof
    Kuenemund, Frank
    Hess, Daniel
    2015 IEEE 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS), VOLS 1-2, 2015, : 873 - 878
  • [38] Energy Optimization of Electric Vehicle's Acceleration Process Based on Reinforcement Learning
    Cao, Jianfei
    He, Hongwen
    JOINT INTERNATIONAL CONFERENCE ON ENERGY, ECOLOGY AND ENVIRONMENT ICEEE 2018 AND ELECTRIC AND INTELLIGENT VEHICLES ICEIV 2018, 2018,
  • [39] Energy optimization of electric vehicle's acceleration process based on reinforcement learning
    He, Hongwen
    Cao, Jianfei
    Cui, Xing
    JOURNAL OF CLEANER PRODUCTION, 2020, 248
  • [40] Reinforcement Learning-Based Energy Optimization for a Fuel Cell Electric Vehicle
    Hou, Shengyan
    Liu, Xuan
    Yin, Hai
    Gao, Jinwu
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1928 - 1933