Energy Management Strategy for a Hybrid Electric Vehicle Based on Deep Reinforcement Learning

被引:183
|
作者
Hu, Yue [1 ,2 ,3 ]
Li, Weimin [1 ,3 ,4 ]
Xu, Kun [1 ]
Zahid, Taimoor [1 ,2 ]
Qin, Feiyan [1 ,2 ]
Li, Chenming [5 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen 518055, Peoples R China
[3] Chinese Acad Sci, Jining Inst Adv Technol, Jining 272000, Peoples R China
[4] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong 999077, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Hong Kong, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 02期
基金
中国国家自然科学基金;
关键词
hybrid electric vehicle; energy management strategy; deep reinforcement learning; online learning; OPTIMIZATION;
D O I
10.3390/app8020187
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An energy management strategy (EMS) is important for hybrid electric vehicles (HEVs) since it plays a decisive role on the performance of the vehicle. However, the variation of future driving conditions deeply influences the effectiveness of the EMS. Most existing EMS methods simply follow predefined rules that are not adaptive to different driving conditions online. Therefore, it is useful that the EMS can learn from the environment or driving cycle. In this paper, a deep reinforcement learning (DRL)-based EMS is designed such that it can learn to select actions directly from the states without any prediction or predefined rules. Furthermore, a DRL-based online learning architecture is presented. It is significant for applying the DRL algorithm in HEV energy management under different driving conditions. Simulation experiments have been conducted using MATLAB and Advanced Vehicle Simulator (ADVISOR) co-simulation. Experimental results validate the effectiveness of the DRL-based EMS compared with the rule-based EMS in terms of fuel economy. The online learning architecture is also proved to be effective. The proposed method ensures the optimality, as well as real-time applicability, in HEVs.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Energy Management Strategy for Hybrid Electric Vehicle Based on the Deep Reinforcement Learning Method
    Chen Z.
    Fang Z.
    Yang R.
    Yu Q.
    Kang M.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37 (23): : 6157 - 6168
  • [2] Deep reinforcement learning based energy management for a hybrid electric vehicle
    Du, Guodong
    Zou, Yuan
    Zhang, Xudong
    Liu, Teng
    Wu, Jinlong
    He, Dingbo
    ENERGY, 2020, 201 (201)
  • [3] A comparative study of deep reinforcement learning based energy management strategy for hybrid electric vehicle
    Wang, Zexing
    He, Hongwen
    Peng, Jiankun
    Chen, Weiqi
    Wu, Changcheng
    Fan, Yi
    Zhou, Jiaxuan
    ENERGY CONVERSION AND MANAGEMENT, 2023, 293
  • [4] Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle
    Qi, Chunyang
    Zhu, Yiwen
    Song, Chuanxue
    Yan, Guangfu
    Wang, Da
    Xiao, Feng
    Zhang, Xu
    Cao, Jingwei
    Song, Shixin
    ENERGY, 2022, 238
  • [5] Heuristic Energy Management Strategy of Hybrid Electric Vehicle Based on Deep Reinforcement Learning With Accelerated Gradient Optimization
    Du, Guodong
    Zou, Yuan
    Zhang, Xudong
    Guo, Lingxiong
    Guo, Ningyuan
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2021, 7 (04) : 2194 - 2208
  • [6] Deep reinforcement learning based energy management strategy for range extend fuel cell hybrid electric vehicle
    Huang, Yin
    Hu, Haoqin
    Tan, Jiaqi
    Lu, Chenlei
    Xuan, Dongji
    ENERGY CONVERSION AND MANAGEMENT, 2023, 277
  • [7] Research on Energy Management Strategy of Electric Vehicle Hybrid System Based on Reinforcement Learning
    Cheng, Yu
    Xu, Ge
    Chen, Qihong
    ELECTRONICS, 2022, 11 (13)
  • [8] Reinforcement Learning-Based Energy Management Strategy for a Hybrid Electric Tracked Vehicle
    Liu, Teng
    Zou, Yuan
    Liu, Dexing
    Sun, Fengchun
    ENERGIES, 2015, 8 (07): : 7243 - 7260
  • [9] Safe Deep Reinforcement Learning Hybrid Electric Vehicle Energy Management
    Liessner, Roman
    Dietermann, Ansgar Malte
    Baeker, Bernard
    AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2018, 2019, 11352 : 161 - 181
  • [10] Energy management for a hybrid electric vehicle based on prioritized deep reinforcement learning framework
    Du, Guodong
    Zou, Yuan
    Zhang, Xudong
    Guo, Lingxiong
    Guo, Ningyuan
    ENERGY, 2022, 241