A Bayesian joint model for multivariate longitudinal and time-to-event data with application to ALL maintenance studies (Feb, 10.1080/10543406.2023.2171430, 2023)

被引:0
|
作者
Kundu, Damitri [1 ]
Sarkar, Partha [1 ,2 ]
Gogoi, Manash Pratim [3 ]
Das, Kiranmoy [1 ]
机构
[1] Indian Stat Inst, Appl Stat Div, Kolkata, India
[2] Univ Florida, Dept Stat, Gainesville, FL USA
[3] Tata Med Ctr, Translat Canc Res Ctr, Kolkata, W Bengal, India
关键词
D O I
10.1080/10543406.2023.2189357
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [31] An approximate joint model for multiple paired longitudinal outcomes and time-to-event data
    Elmi, Angelo F.
    Grantz, Katherine L.
    Albert, Paul S.
    [J]. BIOMETRICS, 2018, 74 (03) : 1112 - 1119
  • [32] Joint Hidden Markov Model for Longitudinal and Time-to-Event Data with Latent Variables
    Zhou, Xiaoxiao
    Kang, Kai
    Kwok, Timothy
    Song, Xinyuan
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2022, 57 (2-3) : 441 - 457
  • [33] A Two-Stage Joint Model for Nonlinear Longitudinal Response and a Time-to-Event with Application in Transplantation Studies
    Murawska, Magdalena
    Rizopoulos, Dimitris
    Lesaffre, Emmanuel
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2012, 2012
  • [34] Joint modeling of longitudinal zero-inflated count and time-to-event data: A Bayesian perspective
    Zhu, Huirong
    DeSantis, Stacia M.
    Luo, Sheng
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (04) : 1258 - 1270
  • [35] Within-host bayesian joint modeling of longitudinal and time-to-event data of Leishmania infection
    Pabon-Rodriguez, Felix M.
    Brown, Grant D.
    Scorza, Breanna M.
    Petersen, Christine A.
    [J]. PLOS ONE, 2024, 19 (02):
  • [36] Joint modelling of longitudinal response and time-to-event data using conditional distributions: a Bayesian perspective
    Dutta, Srimanti
    Molenberghs, Geert
    Chakraborty, Arindom
    [J]. JOURNAL OF APPLIED STATISTICS, 2022, 49 (09) : 2228 - 2245
  • [37] Spatial joint models through Bayesian structured piecewise additive joint modelling for longitudinal and time-to-event data
    Anja Rappl
    Thomas Kneib
    Stefan Lang
    Elisabeth Bergherr
    [J]. Statistics and Computing, 2023, 33
  • [38] Spatial joint models through Bayesian structured piecewise additive joint modelling for longitudinal and time-to-event data
    Rappl, Anja
    Kneib, Thomas
    Lang, Stefan
    Bergherr, Elisabeth
    [J]. STATISTICS AND COMPUTING, 2023, 33 (06)
  • [39] Editorial "Joint modeling of longitudinal and time-to-event data and beyond"
    Suarez, Carmen Cadarso
    Klein, Nadja
    Kneib, Thomas
    Molenberghs, Geert
    Rizopoulos, Dimitris
    [J]. BIOMETRICAL JOURNAL, 2017, 59 (06) : 1101 - 1103
  • [40] A MIXED-EFFECTS JOINT MODEL WITH SKEW-T DISTRIBUTION FOR LONGITUDINAL AND TIME-TO-EVENT DATA: A BAYESIAN APPROACH
    Ferede, Melkamu M.
    Mwalili, Samuel M.
    Dagne, Getachew A.
    [J]. COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,