DiabNet: A Convolutional Neural Network for Diabetic Retinopathy Detection

被引:2
|
作者
Anitha, S. [1 ]
Priyanka, S. [1 ]
机构
[1] VIT AP Univ, Sch Elect Engn, Amaravati, Andhra Pradesh, India
关键词
Convolutional neural network; diabetic retinopathy; DiabNet; feature extraction; interpretability; AUTOMATIC DETECTION; ARCHITECTURE; DIAGNOSIS; SYSTEM;
D O I
10.1142/S0219649224500308
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Diabetic retinopathy is a leading cause of blindness among diabetic patients, and early detection is crucial. This research proposes DiabNet, a novel convolutional neural network (CNN) architecture designed to enhance the accuracy, efficiency, and robustness of diabetic retinopathy detection from retinal images. DiabNet incorporates unique features like skip connections, attention mechanisms, and batch normalisation to improve feature extraction. The paper details DiabNet's architecture, feature extraction, and training process. Evaluation on a standard dataset shows that DiabNet surpasses existing methods in accuracy, efficiency, and robustness. The research also explores the interpretability of DiabNet and suggests future research directions. The potential impact of DiabNet includes improved early detection and management of diabetic retinopathy. In addition, DiabNet's deployment as a mobile app enables convenient and accessible diabetic retinopathy screening. Finally, it is noted that DiabNet, as a mobile app, has the potential to significantly impact the field of diabetic retinopathy detection, leading to improved early detection of diabetic retinopathy. The experimental validation proves that the proposed DiabNet architecture is feasible for real-time deployment yielding an accuracy of 98.72%.
引用
收藏
页数:21
相关论文
共 50 条
  • [11] Efficient diabetic retinopathy detection using convolutional neural network and data augmentation
    Naik, Srinivas
    Kamidi, Deepthi
    Govathoti, Sudeepthi
    Cheruku, Ramalingaswamy
    Reddy, A. Mallikarjuna
    [J]. SOFT COMPUTING, 2023,
  • [12] A convolutional neural network for the screening and staging of diabetic retinopathy
    Shaban, Mohamed
    Ogur, Zeliha
    Mahmoud, Ali
    Switala, Andrew
    Shalaby, Ahmed
    Abu Khalifeh, Hadil
    Ghazal, Mohammed
    Fraiwan, Luay
    Giridharan, Guruprasad
    Sandhu, Harpal
    El-Baz, Ayman S.
    [J]. PLOS ONE, 2020, 15 (06):
  • [13] Convolutional Neural Network for Classification of Diabetic Retinopathy Grade
    Alcala-Rmz, Vanessa
    Maeda-Gutierrez, Valeria
    Zanella-Calzada, Laura A.
    Valladares-Salgado, Adan
    Celaya-Padilla, Jose M.
    Galvan-Tejada, Carlos E.
    [J]. ADVANCES IN SOFT COMPUTING, MICAI 2020, PT I, 2020, 12468 : 104 - 118
  • [14] Exudate Detection for Diabetic Retinopathy With Convolutional Neural Networks
    Yu, Shuang
    Xiao, Di
    Kanagasingam, Yogesan
    [J]. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 1744 - 1747
  • [15] An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network
    Hemanth, D. Jude
    Deperlioglu, Omer
    Kose, Utku
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (03): : 707 - 721
  • [16] A Novel Diabetic Retinopathy Detection Approach Based on Deep Symmetric Convolutional Neural Network
    Liu, Tieyuan
    Chen, Yi
    Shen, Hongjie
    Zhou, Rupeng
    Zhang, Meng
    Liu, Tonglai
    Liu, Jin
    [J]. IEEE ACCESS, 2021, 9 : 160552 - 160558
  • [17] Detection of Diabetic Retinopathy Based on a Convolutional Neural Network Using Retinal Fundus Images
    Garcia, Gabriel
    Gallardo, Jhair
    Mauricio, Antoni
    Lopez, Jorge
    Del Carpio, Christian
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 635 - 642
  • [18] Diabetic retinopathy detection from image to classification using deep convolutional neural network
    Varnousfaderani, Ehsan Shahrian
    Belghith, Akram
    Yousefi, Siamak
    Merkow, Jameson
    Tu Zhuowen
    Bowd, Christopher
    Zangwill, Linda M.
    Goldbaum, Michael Henry
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [19] EVALUATION OF CONVOLUTIONAL NEURAL NETWORK VARIANTS FOR DIAGNOSIS OF DIABETIC RETINOPATHY
    Bustamam, Alhadi
    Sarwinda, Devvi
    Paradisa, Radifa H.
    Victor, Andi Arus
    Yudantha, Anggun Rama
    Siswantining, Titin
    [J]. COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2021,
  • [20] Soft attention with Convolutional Neural Network for Grading Diabetic Retinopathy
    Ashwini, K.
    Dash, Ratnakar
    [J]. 2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,