A natural sesquiterpene lactone isolinderalactone attenuates lipopolysaccharide-induced inflammatory response and acute lung injury through inhibition of NF-κB pathway and activation Nrf2 pathway in macrophages

被引:7
|
作者
Shen, Xiaofei [1 ]
Chen, Hongqing [1 ,2 ]
Zhang, Hai [3 ]
Luo, Liuling [3 ]
Wen, Tian [1 ,2 ]
Liu, Lu [1 ,3 ]
Hu, Qiongying [1 ,2 ]
Wang, Lun [4 ]
机构
[1] Hosp Chengdu Univ Tradit Chinese Med, Chengdu Univ Tradit Chinese Med, TCM Regulating Metab Dis Key Lab Sichuan Prov, Chengdu, Peoples R China
[2] Chengdu Univ Tradit Chinese Med, Coll Med Technol, Chengdu, Peoples R China
[3] Chengdu Univ Tradit Chinese Med, Coll Pharm, Chengdu, Peoples R China
[4] Chinese Acad Sci, Chengdu Inst Biol, Ctr Nat Prod Res, Chengdu, Peoples R China
关键词
Isolinderalactone; Anti-inflammatory activity; Macrophages; Macrophages IKK alpha/beta-NF-kappa B pathway; Keap1-Nrf2; pathway; Acute lung injury; ALVEOLAR MACROPHAGES; VENTILATION; SUPPRESSES;
D O I
10.1016/j.intimp.2023.110965
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Isolinderalactone is the main sesquiterpene lactone isolated from Lindera aggregata, a traditional Chinese medicine widely used to treat pain and inflammation. Although isolinderalactone has been demonstrated to possess anti-cancer effect, its anti-inflammatory activity and underlying mechanism has not been well characterized. Herein, isolinderalactone was able to significantly inhibit the production of NO and PGE(2) by reducing the expressions of iNOS and COX2 in LPS-stimulated RAW264.7 macrophages and BMDMs, and decreased the mRNA levels of IL-1 beta, IL-6, and TNF-alpha in LPS-induced RAW264.7 cells. In vivo, isolinderalactone effectively alleviated LPS-induced acute lung injury (ALI), which manifested as reduction in pulmonary inflammatory infiltration, myeloperoxidase activity, and production of PGE(2), IL-1 beta, IL-6, TNF-alpha, and malondialdehyde. Furthermore, isolinderalactone inhibited phosphorylation of IKK alpha/beta, phosphorylation and degradation of I kappa B alpha, and nuclear translocation of NF-kappa B p65, thereby blocking NF-kappa B pro-inflammatory pathway. Meanwhile, isolinderalactone reduced the intracellular ROS through promoting the activation of Nrf2-HMOX1 antioxidant axis. By using drug affinity responsive target stability assay and molecular docking, isolinderalactone was found to covalently interact with IKK alpha/beta and Keap1, which may contribute to its anti-inflammatory action. Additionally, a thiol donor beta-mercaptoethanol significantly abolished isolinderalactone-mediated anti-inflammatory action in vitro, indicating the crucial role of the unsaturated lactone of isolinderalactone on its anti-inflammatory effects. Taken together, isolinderalactone protected against LPS-induced ALI in mice, which may be associated with its inhibition of NF-kappa B pathway and activation of Nrf2 signaling in macrophages.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Tomentosin Inhibits Lipopolysaccharide-Induced Acute Lung Injury and Inflammatory Response by Suppression of the NF-κB Pathway in a Mouse Model of Sepsis
    Zhu, Haijun
    Wang, Yongyi
    Sun, Jie
    Fan, Conghui
    Wan, Jian
    JOURNAL OF ENVIRONMENTAL PATHOLOGY TOXICOLOGY AND ONCOLOGY, 2020, 39 (04) : 291 - 298
  • [22] Xanthoxylin Attenuates Lipopolysaccharide-Induced Lung Injury through Modulation of Akt/HIF-1α/NF-κB and Nrf2 Pathways
    Liu, Fu-Chao
    Yang, Yuan-Han
    Liao, Chia-Chih
    Lee, Hung-Chen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (16)
  • [23] p53 Attenuates Lipopolysaccharide-Induced NF-κB Activation and Acute Lung Injury
    Liu, Gang
    Park, Young-Jun
    Tsuruta, Yuko
    Lorne, Emmanuel
    Abraham, Edward
    JOURNAL OF IMMUNOLOGY, 2009, 182 (08): : 5063 - 5071
  • [24] p-Synephrine suppresses lipopolysaccharide-induced acute lung injury by inhibition of the NF-κB signaling pathway
    Wu, Qianchao
    Li, Ruisheng
    Soromou, Lanan Wassy
    Chen, Na
    Yuan, Xue
    Sun, Guoquan
    Li, Beibei
    Feng, Haihua
    INFLAMMATION RESEARCH, 2014, 63 (06) : 429 - 439
  • [25] p-Synephrine suppresses lipopolysaccharide-induced acute lung injury by inhibition of the NF-κB signaling pathway
    Qianchao Wu
    Ruisheng Li
    Lanan Wassy Soromou
    Na Chen
    Xue Yuan
    Guoquan Sun
    Beibei Li
    Haihua Feng
    Inflammation Research, 2014, 63 : 429 - 439
  • [26] Azilsartan attenuates lipopolysaccharide-induced acute lung injury via the Nrf2/HO-1 signaling pathway
    Chengshi Zhang
    Yunfeng Zhao
    Xiaorong Yang
    Immunologic Research, 2022, 70 : 97 - 105
  • [27] Azilsartan attenuates lipopolysaccharide-induced acute lung injury via the Nrf2/HO-1 signaling pathway
    Zhang, Chengshi
    Zhao, Yunfeng
    Yang, Xiaorong
    IMMUNOLOGIC RESEARCH, 2022, 70 (01) : 97 - 105
  • [28] Anti-inflammatory Role of Trilobatin on Lipopolysaccharide-induced Acute Lung Injury through Activation of AMPK/GSK3β-Nrf2 Pathway
    Zhong, Hai
    Hao, Long
    Li, Xiang
    Wang, Chunjing
    Wu, Xu
    SIGNA VITAE, 2020, 16 (02) : 160 - 166
  • [29] Asiaticoside attenuates lipopolysaccharide-induced acute lung injury via down-regulation of NF-κB signaling pathway
    Qiu, Jiaming
    Yu, Lijun
    Zhang, Xingxing
    Wu, Qianchao
    Wang, Di
    Wang, Xiuzhi
    Xia, Cheng
    Feng, Haihua
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2015, 26 (01) : 181 - 187
  • [30] Vinpocetine reduces cisplatin-induced acute kidney injury through inhibition of NF–κB pathway and activation of Nrf2/ARE pathway in rats
    Wenjing Song
    Weinan Yin
    Liang Ding
    Yang Gao
    JingJing Xu
    Yan Yang
    Xin He
    Pengju Gong
    Lei Wei
    Wenli Chen
    Jingwei Zhang
    International Urology and Nephrology, 2020, 52 : 1389 - 1401