Holonomic and Non-Holonomic Geometric Models Associated to the Gibbs-Helmholtz Equation

被引:0
|
作者
Pripoae, Cristina-Liliana [1 ]
Hirica, Iulia-Elena [2 ]
Pripoae, Gabriel-Teodor [2 ]
Preda, Vasile [2 ,3 ,4 ]
机构
[1] Bucharest Univ Econ Studies, Dept Appl Math, Piata Romana 6, RO-010374 Bucharest, Romania
[2] Univ Bucharest, Fac Math & Comp Sci, Acad 14, RO-010014 Bucharest, Romania
[3] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl M, 2 Calea 13 Septembrie,13, Bucharest 050711 5, Romania
[4] Romanian Acad, Costin C Kiritescu Natl Inst Econ Res, 3 Calea 13 Septembrie,13,Sect 5, RO-050711 Bucharest, Romania
关键词
Gibbs-Helmholtz equation; free energy; pressure; volume; temperature; Boltzmann-Gibbs-Shannon entropy; heat (thermal) capacity; thermal pressure coefficient; chemical thermodynamics; 80-10; EQUIVALENCE; ENTROPY;
D O I
10.3390/math11183934
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By replacing the internal energy with the free energy, as coordinates in a "space of observables", we slightly modify (the known three) non-holonomic geometrizations from Udriste's et al. work. The coefficients of the curvature tensor field, of the Ricci tensor field, and of the scalar curvature function still remain rational functions. In addition, we define and study a new holonomic Riemannian geometric model associated, in a canonical way, to the Gibbs-Helmholtz equation from Classical Thermodynamics. Using a specific coordinate system, we define a parameterized hypersurface in R4 as the "graph" of the entropy function. The main geometric invariants of this hypersurface are determined and some of their properties are derived. Using this geometrization, we characterize the equivalence between the Gibbs-Helmholtz entropy and the Boltzmann-Gibbs-Shannon, Tsallis, and Kaniadakis entropies, respectively, by means of three stochastic integral equations. We prove that some specific (infinite) families of normal probability distributions are solutions for these equations. This particular case offers a glimpse of the more general "equivalence problem" between classical entropy and statistical entropy.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Non-holonomic equations for the normal extremals in geometric control theory
    Gover, A. Rod
    Slovak, Jan
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 171
  • [22] On singular non-holonomic geometry
    Popescu, P.
    Popescu, M.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2013, 18 (02): : 58 - 68
  • [23] On the Model of Non-holonomic Billiard
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (06): : 653 - 662
  • [24] On some non-holonomic sequences
    Gerhold, S
    ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 11 (01):
  • [25] Geodesics in non-holonomic geometry
    Synge, JL
    MATHEMATISCHE ANNALEN, 1928, 99 : 738 - 751
  • [26] On generalized non-holonomic systems
    Balseiro, P.
    Solomin, J. E.
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 84 (01) : 15 - 30
  • [27] Non-holonomic control III : Coherence protection by the quantum zeno effect and non-holonomic control
    Brion, E
    Akulin, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    Quantum Informatics 2004, 2004, 5833 : 80 - 90
  • [28] NON-HOLONOMIC ELASTIC-PLASTIC STATES OF A SUBSTANCE AND NON-HOLONOMIC CONDITIONS ON STRONG BREAKS
    VERVEIKO, ND
    NIKOLAEVSKII, VN
    PRIKLADNAYA MATEMATIKA I MEKHANIKA, 1974, 38 (05): : 899 - 905
  • [29] Learning Non-Holonomic Object Models for Mobile Manipulation
    Scholz, Jonathan
    Levihn, Martin
    Isbell, Charles L.
    Christensen, Henrik
    Stilman, Mike
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 5531 - 5536
  • [30] DYNAMICS OF NON-HOLONOMIC SYSTEMS
    INOSTROZA, ROR
    HADRONIC JOURNAL, 1984, 7 (05): : 1134 - 1157