Holonomic and Non-Holonomic Geometric Models Associated to the Gibbs-Helmholtz Equation

被引:0
|
作者
Pripoae, Cristina-Liliana [1 ]
Hirica, Iulia-Elena [2 ]
Pripoae, Gabriel-Teodor [2 ]
Preda, Vasile [2 ,3 ,4 ]
机构
[1] Bucharest Univ Econ Studies, Dept Appl Math, Piata Romana 6, RO-010374 Bucharest, Romania
[2] Univ Bucharest, Fac Math & Comp Sci, Acad 14, RO-010014 Bucharest, Romania
[3] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl M, 2 Calea 13 Septembrie,13, Bucharest 050711 5, Romania
[4] Romanian Acad, Costin C Kiritescu Natl Inst Econ Res, 3 Calea 13 Septembrie,13,Sect 5, RO-050711 Bucharest, Romania
关键词
Gibbs-Helmholtz equation; free energy; pressure; volume; temperature; Boltzmann-Gibbs-Shannon entropy; heat (thermal) capacity; thermal pressure coefficient; chemical thermodynamics; 80-10; EQUIVALENCE; ENTROPY;
D O I
10.3390/math11183934
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By replacing the internal energy with the free energy, as coordinates in a "space of observables", we slightly modify (the known three) non-holonomic geometrizations from Udriste's et al. work. The coefficients of the curvature tensor field, of the Ricci tensor field, and of the scalar curvature function still remain rational functions. In addition, we define and study a new holonomic Riemannian geometric model associated, in a canonical way, to the Gibbs-Helmholtz equation from Classical Thermodynamics. Using a specific coordinate system, we define a parameterized hypersurface in R4 as the "graph" of the entropy function. The main geometric invariants of this hypersurface are determined and some of their properties are derived. Using this geometrization, we characterize the equivalence between the Gibbs-Helmholtz entropy and the Boltzmann-Gibbs-Shannon, Tsallis, and Kaniadakis entropies, respectively, by means of three stochastic integral equations. We prove that some specific (infinite) families of normal probability distributions are solutions for these equations. This particular case offers a glimpse of the more general "equivalence problem" between classical entropy and statistical entropy.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Non-holonomic control II : Non-holonomic quantum devices
    Brion, E
    Akulim, VM
    Comparat, D
    Dumer, I
    Gershkovich, V
    Harel, G
    Kurizki, G
    Mazets, I
    Pillet, P
    Quantum Informatics 2004, 2004, 5833 : 70 - 79
  • [2] Gibbs-Helmholtz equation and entropy
    Keszei, Erno
    CHEMTEXTS, 2016, 2 (04):
  • [3] The non-Holonomic mechanics
    Kupka, I
    Oliva, WM
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 169 - 189
  • [4] On non-holonomic connexions
    Schouten, JA
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1928, 31 (1/5): : 291 - 299
  • [5] The non-holonomic double pendulum: An example of non-linear non-holonomic system
    Sergio Benenti
    Regular and Chaotic Dynamics, 2011, 16 : 417 - 442
  • [6] Non-holonomic integrators
    Cortés, J
    Martínez, S
    NONLINEARITY, 2001, 14 (05) : 1365 - 1392
  • [7] On the derivation of the Gibbs-Helmholtz equation
    Roosz, Balazs
    Visy, Csaba
    Nagypal, Istvan
    CHEMTEXTS, 2016, 2 (02):
  • [8] The Non-holonomic Double Pendulum: an Example of Non-linear Non-holonomic System
    Benenti, Sergio
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (05): : 417 - 442
  • [9] Hamilton Non-holonomic Momentum Equation of the System and Conclusions
    Liu, Hongfang
    Li, Ruijuan
    Li, Nana
    INFORMATION COMPUTING AND APPLICATIONS, PT I, 2011, 243 : 23 - +
  • [10] Motion planning for multiple non-holonomic robots: a geometric approach
    Xidias, Elias K.
    Aspragathos, Nikos A.
    ROBOTICA, 2008, 26 : 525 - 536