Bivariate Fractal Interpolation Functions on Triangular Domain for Numerical Integration and Approximation

被引:0
|
作者
Aparna, M. P. [1 ]
Paramanathan, P. [1 ]
机构
[1] Amrita Vishwa Vidyapeetham, Amrita Sch Phys Sci, Dept Math, Coimbatore, India
关键词
Bivariate fractal interpolation function (BFIF); chromatic number; double integration;
D O I
10.1142/S0219876223500196
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The primary objectives of this paper are to present the construction of bivariate fractal interpolation functions over triangular interpolating domain using the concept of vertex coloring and to propose a double integration formula for the constructed interpolation functions. Unlike the conventional constructions, each vertex in the partition of the triangular region has been assigned a color such that the chromatic number of the partition is 3. A new method for the partitioning of the triangle is proposed with a result concerning the chromatic number of its graph. Following the construction, a formula determining the vertical scaling factor is provided such that the actual double integral coincides with the integral value calculated using fractal theory. Convergence of the proposed method to the actual integral value is proven with sufficient lemmas and theorems. Adequate examples are presented to illustrate the method of construction and to verify the value of double integration.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Nonlinear bivariate fractal interpolation function on grids
    Ri, SongIl
    CHAOS SOLITONS & FRACTALS, 2015, 81 : 351 - 358
  • [42] Generalized Bivariate Hermite Fractal Interpolation Function
    Jha, S.
    Chand, A. K. B.
    Navascues, M. A.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2021, 14 (02) : 103 - 114
  • [43] Hidden variable bivariate fractal interpolation surfaces
    Chand, AKB
    Kapoor, GP
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2003, 11 (03) : 277 - 288
  • [44] Constrained univariate and bivariate rational fractal interpolation
    Reddy, K. M.
    Chand, A. K. B.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2019, 20 (05): : 404 - 422
  • [45] BIVARIATE FRACTAL INTERPOLATION SURFACES: THEORY AND APPLICATIONS
    Drakopoulos, Vassileios
    Manousopoulos, Polychronis
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (09):
  • [46] A Fractal Version of a Bivariate Hermite Polynomial Interpolation
    Viswanathan, P.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [47] A NEW NONLINEAR BIVARIATE FRACTAL INTERPOLATION FUNCTION
    Ri, Song-Il
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (04)
  • [48] Generalized Bivariate Hermite Fractal Interpolation Function
    S. Jha
    A. K. B. Chand
    M. A. Navascues
    Numerical Analysis and Applications, 2021, 14 : 103 - 114
  • [49] The Minkowski dimension of the bivariate fractal interpolation surfaces
    Malysz, R
    CHAOS SOLITONS & FRACTALS, 2006, 27 (05) : 1147 - 1156
  • [50] Fractal Calculus on Fractal Interpolation Functions
    Gowrisankar, Arulprakash
    Khalili Golmankhaneh, Alireza
    Serpa, Cristina
    FRACTAL AND FRACTIONAL, 2021, 5 (04)