Constrained univariate and bivariate rational fractal interpolation

被引:2
|
作者
Reddy, K. M. [1 ,2 ]
Chand, A. K. B. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
[2] VIT AP Univ, Sch Sci & Languages, Dept Math, Amaravati, India
关键词
Fractals; iterated function systems; splines; rational fractal interpolation function; convergence; fractal interpolation surface; constrained interpolation; SURFACES;
D O I
10.1080/15502287.2019.1687610
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study constrained natures of a new class of univariate and bivariate rational cubic fractal interpolation functions (RCFIFs). We derive the convergence results of the RCFIF towards an original function in C-2. In particular, when data lies (i) between two piecewise defined lines (ii) within a rectangle, we derive sufficient condition based on the restrictions of IFS parameters at fewer discretized values so that the corresponding RCFIF preserves the inherent property associated with constrained data. Using transfinite interpolation via blending functions, we extend constrained aspects to rational bivariate RCFIFs that lie above a piecewise plane and within a cuboid.
引用
收藏
页码:404 / 422
页数:19
相关论文
共 50 条
  • [1] α-FRACTAL RATIONAL SPLINES FOR CONSTRAINED INTERPOLATION
    Viswanathan, Puthan Veedu
    Chand, Arya Kumar Bedabrata
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 420 - 442
  • [2] A rational iterated function system for resolution of univariate constrained interpolation
    P. Viswanathan
    A. K. B. Chand
    M. A. Navascués
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2015, 109 : 483 - 509
  • [3] A rational iterated function system for resolution of univariate constrained interpolation
    Viswanathan, P.
    Chand, A. K. B.
    Navascues, M. A.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (02) : 483 - 509
  • [4] Constrained and convex interpolation through rational cubic fractal interpolation surface
    N. Balasubramani
    M. Guru Prem Prasad
    S. Natesan
    [J]. Computational and Applied Mathematics, 2018, 37 : 6308 - 6331
  • [5] Constrained and convex interpolation through rational cubic fractal interpolation surface
    Balasubramani, N.
    Prasad, M. Guru Prem
    Natesan, S.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 6308 - 6331
  • [6] Visualization of constrained data by smooth rational fractal interpolation
    Liu, Jianshun
    Bao, Fangxun
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (09) : 1524 - 1540
  • [7] TOWARDS A MORE GENERAL TYPE OF UNIVARIATE CONSTRAINED INTERPOLATION WITH FRACTAL SPLINES
    Chand, A. K. B.
    Viswanathan, P.
    Reddy, K. M.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (04)
  • [8] Parameter Identification for a Class of Bivariate Fractal Interpolation Functions and Constrained Approximation
    Verma, S.
    Viswanathan, P.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (09) : 1109 - 1148
  • [9] CONSTRAINED SHAPE PRESERVING RATIONAL CUBIC FRACTAL INTERPOLATION FUNCTIONS
    Chand, A. K. B.
    Tyada, K. R.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (01) : 75 - 105
  • [10] Bivariate interpolation based on univariate subdivision schemes
    Sharon, Nir
    Dyn, Nira
    [J]. JOURNAL OF APPROXIMATION THEORY, 2012, 164 (05) : 709 - 730