Morphological Transformation and Spatial-Logical Aggregation for Tree Species Classification Using Hyperspectral Imagery

被引:104
|
作者
Zhang, Mengmeng [1 ]
Li, Wei [1 ]
Zhao, Xudong [1 ]
Liu, Huan [1 ]
Tao, Ran [1 ]
Du, Qian [2 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Feature extraction; Vegetation; Convolution; Task analysis; Data mining; Convolutional neural networks; Transformers; Tree species; convolution neural network; deep learning; hyperspectral image (HSI); morphological transformation; FEATURE-EXTRACTION; CNN; NETWORKS;
D O I
10.1109/TGRS.2022.3233847
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) consists of abundant spectral and spatial characteristics, which contribute to a more accurate identification of materials and land covers. However, most existing methods of hyperspectral image analysis primarily focus on spectral knowledge or coarse-grained spatial information while neglecting the fine-grained morphological structures. In the classification task of complex objects, spatial morphological differences can help to search for the boundary of fine-grained classes, e.g., forestry tree species. Focusing on subtle traits extraction, a spatial-logical aggregation network (SLA-NET) is proposed with morphological transformation for tree species classification. The morphological operators are effectively embedded with the trainable structuring elements, which contributes to distinctive morphological representations. We evaluate the classification performance of the proposed method on two tree species datasets, and the results demonstrate that the proposed SLA-NET significantly outperforms the other state-of-the-art classifiers.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] An efficient spatial-spectral classification method for hyperspectral imagery
    Li, Wei
    Du, Qian
    [J]. SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING X, 2014, 9124
  • [32] Spectral-spatial classification of hyperspectral imagery with cooperative game
    Zhao, Ji
    Zhong, Yanfei
    Jia, Tianyi
    Wang, Xinyu
    Xu, Yao
    Shu, Hong
    Zhang, Liangpei
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 135 : 31 - 42
  • [33] Spectral-spatial classification to pattern recognition of hyperspectral imagery
    Su, Tung-Ching
    [J]. FOURTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2012), 2012, 8334
  • [34] Unsupervised Selection of Training Samples for Tree Species Classification Using Hyperspectral Data
    Dalponte, Michele
    Ene, Liviu Theodor
    Orka, Hans Ole
    Gobakken, Terje
    Naesset, Erik
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (08) : 3560 - 3569
  • [35] TREE SPECIES CLASSIFICATION USING AIRBORNE HYPERSPECTRAL DATA IN SUBTROPICAL MOUNTAINOUS FOREST
    Jia, Wen
    Pang, Yong
    Meng, Shili
    Ju, Hongbo
    Li, Zengyuan
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2284 - 2287
  • [36] Spatial Functional Data Analysis for the Spatial-Spectral Classification of Hyperspectral Imagery
    Lv, Meng
    Fowler, James E.
    Jing, Ling
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (06) : 942 - 946
  • [37] HYPERSPECTRAL TREE SPECIES CLASSIFICATION WITH AN AID OF LIDAR DATA
    Matsuki, Toniohiro
    Yokoya, Naoto
    Iwasaki, Akira
    [J]. 2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [38] Tree Species Classification in Boreal Forests With Hyperspectral Data
    Dalponte, Michele
    Orka, Hans Ole
    Gobakken, Terje
    Gianelle, Damiano
    Naesset, Erik
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05): : 2632 - 2645
  • [39] Watershed segmentation and classification of tree species using high resolution forest imagery
    Kanda, F
    Kubo, M
    Muramoto, K
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3822 - 3825
  • [40] Simulated Multispectral Imagery for Tree Species Classification Using Support Vector Machines
    Heikkinen, Ville
    Tokola, Timo
    Parkkinen, Jussi
    Korpela, Ilkka
    Jaaskelainen, Timo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (03): : 1355 - 1364