Morphological Transformation and Spatial-Logical Aggregation for Tree Species Classification Using Hyperspectral Imagery

被引:104
|
作者
Zhang, Mengmeng [1 ]
Li, Wei [1 ]
Zhao, Xudong [1 ]
Liu, Huan [1 ]
Tao, Ran [1 ]
Du, Qian [2 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Feature extraction; Vegetation; Convolution; Task analysis; Data mining; Convolutional neural networks; Transformers; Tree species; convolution neural network; deep learning; hyperspectral image (HSI); morphological transformation; FEATURE-EXTRACTION; CNN; NETWORKS;
D O I
10.1109/TGRS.2022.3233847
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) consists of abundant spectral and spatial characteristics, which contribute to a more accurate identification of materials and land covers. However, most existing methods of hyperspectral image analysis primarily focus on spectral knowledge or coarse-grained spatial information while neglecting the fine-grained morphological structures. In the classification task of complex objects, spatial morphological differences can help to search for the boundary of fine-grained classes, e.g., forestry tree species. Focusing on subtle traits extraction, a spatial-logical aggregation network (SLA-NET) is proposed with morphological transformation for tree species classification. The morphological operators are effectively embedded with the trainable structuring elements, which contributes to distinctive morphological representations. We evaluate the classification performance of the proposed method on two tree species datasets, and the results demonstrate that the proposed SLA-NET significantly outperforms the other state-of-the-art classifiers.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] MULTISCALE SPECTRAL-SPATIAL CLASSIFICATION FOR HYPERSPECTRAL IMAGERY
    Long, Zhiling
    Du, Qian
    Younan, Nicolas H.
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1051 - 1054
  • [22] TREE SPECIES CLASSIFICATION WITH HYPERSPECTRAL IMAGING AND LIDAR
    Rudjord, Oystein
    Trier, Oivind Due
    [J]. 2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [23] Crown-level tree species classification from AISA hyperspectral imagery using an innovative pixel-weighting approach
    Liu, Haijian
    Wu, Changshan
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 68 : 298 - 307
  • [24] The influence of BRDF effects and representativeness of training data on tree species classification using multi-flightline airborne hyperspectral imagery
    Jia, Wen
    Pang, Yong
    Tortini, Riccardo
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 207 : 245 - 263
  • [25] DISCRIMINATION OF REMNANT TREE SPECIES AND REGENERATION STAGES IN QUEENSLAND, AUSTRALIA USING HYPERSPECTRAL IMAGERY
    Apan, Armando
    Phinn, Stuart
    Maraseni, Tek
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 207 - +
  • [26] Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne Hyperspectral Data
    Maschler, Julia
    Atzberger, Clement
    Immitzer, Markus
    [J]. REMOTE SENSING, 2018, 10 (08)
  • [27] Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data
    Dalponte, Michele
    Orka, Hans Ole
    Ene, Liviu Theodor
    Gobakken, Terje
    Naesset, Erik
    [J]. REMOTE SENSING OF ENVIRONMENT, 2014, 140 : 306 - 317
  • [28] Optimal Feature Selection for the Classification of Hyperspectral Imagery Using Adaptive Spectral–Spatial Clustering
    S. Chidambaram
    A. Sumathi
    [J]. International Journal of Parallel Programming, 2020, 48 : 813 - 832
  • [29] Hyperspectral Imagery Classification Using Deep Learning
    Bidari, Indira
    Chickerur, Satyadhyan
    Ranmale, Harivijay
    Talawar, Sushmita
    Ramadurg, Harish
    Talikoti, Rekha
    [J]. PROCEEDINGS OF THE 2020 FOURTH WORLD CONFERENCE ON SMART TRENDS IN SYSTEMS, SECURITY AND SUSTAINABILITY (WORLDS4 2020), 2020, : 672 - 676
  • [30] Peanut maturity classification using hyperspectral imagery
    Zou, Sheng
    Tseng, Yu-Chien
    Zare, Alina
    Rowland, Diane L.
    Tillman, Barry L.
    Yoon, Seung-Chul
    [J]. BIOSYSTEMS ENGINEERING, 2019, 188 : 165 - 177