Morphological Transformation and Spatial-Logical Aggregation for Tree Species Classification Using Hyperspectral Imagery

被引:104
|
作者
Zhang, Mengmeng [1 ]
Li, Wei [1 ]
Zhao, Xudong [1 ]
Liu, Huan [1 ]
Tao, Ran [1 ]
Du, Qian [2 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Feature extraction; Vegetation; Convolution; Task analysis; Data mining; Convolutional neural networks; Transformers; Tree species; convolution neural network; deep learning; hyperspectral image (HSI); morphological transformation; FEATURE-EXTRACTION; CNN; NETWORKS;
D O I
10.1109/TGRS.2022.3233847
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) consists of abundant spectral and spatial characteristics, which contribute to a more accurate identification of materials and land covers. However, most existing methods of hyperspectral image analysis primarily focus on spectral knowledge or coarse-grained spatial information while neglecting the fine-grained morphological structures. In the classification task of complex objects, spatial morphological differences can help to search for the boundary of fine-grained classes, e.g., forestry tree species. Focusing on subtle traits extraction, a spatial-logical aggregation network (SLA-NET) is proposed with morphological transformation for tree species classification. The morphological operators are effectively embedded with the trainable structuring elements, which contributes to distinctive morphological representations. We evaluate the classification performance of the proposed method on two tree species datasets, and the results demonstrate that the proposed SLA-NET significantly outperforms the other state-of-the-art classifiers.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Classification of hyperspectral forest tree species based on morphological transform and spatial logical integration
    Zhang, Mengmeng
    Li, Wei
    Liu, Huan
    Zhao, Xudong
    Tao, Ran
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (07): : 1202 - 1211
  • [2] Classification of urban tree species using hyperspectral imagery
    Jensen, Ryan R.
    Hardin, Perry J.
    Hardin, Andrew J.
    [J]. GEOCARTO INTERNATIONAL, 2012, 27 (05) : 443 - 458
  • [3] The effect of spectral and spatial degradation of hyperspectral imagery for the Sclerophyll tree species classification
    Pena, Marco A.
    Cruz, Pablo
    Roig, Miguel
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (20) : 7113 - 7130
  • [4] Tree Species Classification Using Hyperspectral Imagery: A Comparison of Two Classifiers
    Ballanti, Laurel
    Blesius, Leonhard
    Hines, Ellen
    Kruse, Bill
    [J]. REMOTE SENSING, 2016, 8 (06)
  • [5] INDIVIDUAL TREE SPECIES CLASSIFICATION USING AIRBORNE HYPERSPECTRAL IMAGERY AND LIDAR DATA
    Burai, Peter
    Beko, Laszlo
    Lenart, Csaba
    Tomor, Tamas
    Kovacs, Zoltan
    [J]. 2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [6] A Hybrid convolution neural network for the classification of tree species using hyperspectral imagery
    Wang, Jian
    Jiang, Yongchang
    [J]. PLOS ONE, 2024, 19 (05):
  • [7] Forest Tree species Classification Based on Airborne Hyperspectral Imagery
    Dian, Yuanyong
    Li, Zengyuan
    Pang, Yong
    [J]. MIPPR 2013: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2013, 8921
  • [8] Assessing Data Preparation and Machine Learning for Tree Species Classification Using Hyperspectral Imagery
    Ni-Meister, Wenge
    Albanese, Anthony
    Lingo, Francesca
    [J]. REMOTE SENSING, 2024, 16 (17)
  • [9] A spectral-spatial attention aggregation network for hyperspectral imagery classification
    Kuang, Wenlan
    Tu, Bing
    He, Wangquan
    Zhang, Guoyun
    Peng, Yishu
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (19) : 7551 - 7580
  • [10] Dual-Concentrated Network With Morphological Features for Tree Species Classification Using Hyperspectral Image
    Guo, Zhengqi
    Zhang, Mengmeng
    Jia, Wen
    Zhang, Jinxin
    Li, Wei
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 7013 - 7024