Flexural Behavior of Alkali-Activated Ultra-High-Performance Geopolymer Concrete Beams

被引:1
|
作者
Su, Jie [1 ,2 ]
Tan, Jiandong [2 ]
Li, Kai [1 ,2 ]
Fang, Zhi [1 ,2 ]
机构
[1] Hunan Univ, Coll Civil Engn, Key Lab Green & Adv Civil Engn Mat & Applicat Tech, Changsha 410082, Peoples R China
[2] Hunan Univ, Coll Civil Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
alkali-activated cement; ultra-high-performance geopolymer concrete (UHPGC); beam; flexural behavior; reinforcement ratio; steel fiber content;
D O I
10.3390/buildings14030701
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Ultra-high-performance geopolymer concrete (UHPGC) emerges as a sustainable and cost-effective alternative to Portland cement-based UHPC, offering similar mechanical properties while significantly reducing carbon footprint and energy consumption. Research on UHPGC components is extremely scarce. This study focuses on the flexural and crack behavior of UHPGC beams with different steel fiber contents and longitudinal reinforcement ratios. Five UHPGC beams were tested under four-point bending. The test results were evaluated in terms of the failure mode, load-deflection relationship, flexural capacity, ductility, average crack spacing, and short-term flexural stiffness. The results show that all the UHPGC beams failed due to crack localization. Increases in the reinforcement ratio and steel fiber content had favorable effects on the flexural capacity and flexural stiffness. When the reinforcement ratio increased from 1.18% to 2.32%, the flexural capacity and flexural stiffness increased by 60.5% and 12.3%, respectively. As the steel fiber content increased from 1.5% to 2.5%, the flexural capacity and flexural stiffness increased by 4.7% and 4.4%, respectively. Furthermore, the flexural capacity, flexural stiffness, and crack spacing of the UHPGC beams were evaluated using existing methods. The results indicate that the existing methods can effectively predict flexural capacity and flexural stiffness in UHPGC beams but overestimate crack spacing. This study will provide a reference for the structural design of UHPGC.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A review of engineering properties of ultra-high-performance geopolymer concrete
    Bahmani, Hadi
    Mostofinejad, Davood
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2023, 14
  • [32] Flexural Behavior of Reinforced Geopolymer Concrete Beams
    Hutagi, Aslam
    Khadiranaikar, R. B.
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 3463 - 3467
  • [33] Experimental Study on the Flexural Behavior of Lap-Spliced Ultra-High-Performance Fiber-Reinforced Concrete Beams
    Bae, Baek-Il
    Choi, Hyun-Ki
    POLYMERS, 2022, 14 (11)
  • [34] Research on the design method of flexural capacity of RC beams strengthen by ultra-high-performance concrete
    Wang, Jiawei
    Ying, Feifei
    ARCHIVES OF CIVIL ENGINEERING, 2024, 70 (01) : 487 - 507
  • [35] Behavior of ultra-high-performance concrete deep beams reinforced by basalt fibers
    Hussain, Laith N.
    Hamood, Mohammed J.
    Al-Shaarbaf, Ehsan A.
    OPEN ENGINEERING, 2024, 14 (01):
  • [36] Numerical investigation of the shear behavior of reinforced ultra-high-performance concrete beams
    Bahij, Sifatullah
    Adekunle, Saheed K.
    Al-Osta, Mohammed
    Ahmad, Shamsad
    Al-Dulaijan, Salah U.
    Rahman, Muhammad K.
    STRUCTURAL CONCRETE, 2018, 19 (01) : 305 - 317
  • [37] Using rice husk ash in alkali-activated ultra-high-performance concrete: Flowability, early age strength and elasticity modulus
    Pu, Bei-chen
    Liu, Bin
    Li, Li
    Jiang, Lei
    Zhou, Jiajia
    Ding, Peng
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 443
  • [38] Size effect in ultra-high-performance concrete beams
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    Kang, Su-Tae
    Yoon, Young-Soo
    ENGINEERING FRACTURE MECHANICS, 2016, 157 : 86 - 106
  • [39] Flexural behavior of FRP bars reinforced seawater coral aggregate concrete beams incorporating alkali-activated materials
    Bai Zhang
    Hong Zhu
    Teng Xiong
    Hui Peng
    Materials and Structures, 2024, 57
  • [40] Flexural behavior of FRP bars reinforced seawater coral aggregate concrete beams incorporating alkali-activated materials
    Zhang, Bai
    Zhu, Hong
    Xiong, Teng
    Peng, Hui
    MATERIALS AND STRUCTURES, 2024, 57 (02)