Flexural Behavior of Alkali-Activated Ultra-High-Performance Geopolymer Concrete Beams

被引:1
|
作者
Su, Jie [1 ,2 ]
Tan, Jiandong [2 ]
Li, Kai [1 ,2 ]
Fang, Zhi [1 ,2 ]
机构
[1] Hunan Univ, Coll Civil Engn, Key Lab Green & Adv Civil Engn Mat & Applicat Tech, Changsha 410082, Peoples R China
[2] Hunan Univ, Coll Civil Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
alkali-activated cement; ultra-high-performance geopolymer concrete (UHPGC); beam; flexural behavior; reinforcement ratio; steel fiber content;
D O I
10.3390/buildings14030701
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Ultra-high-performance geopolymer concrete (UHPGC) emerges as a sustainable and cost-effective alternative to Portland cement-based UHPC, offering similar mechanical properties while significantly reducing carbon footprint and energy consumption. Research on UHPGC components is extremely scarce. This study focuses on the flexural and crack behavior of UHPGC beams with different steel fiber contents and longitudinal reinforcement ratios. Five UHPGC beams were tested under four-point bending. The test results were evaluated in terms of the failure mode, load-deflection relationship, flexural capacity, ductility, average crack spacing, and short-term flexural stiffness. The results show that all the UHPGC beams failed due to crack localization. Increases in the reinforcement ratio and steel fiber content had favorable effects on the flexural capacity and flexural stiffness. When the reinforcement ratio increased from 1.18% to 2.32%, the flexural capacity and flexural stiffness increased by 60.5% and 12.3%, respectively. As the steel fiber content increased from 1.5% to 2.5%, the flexural capacity and flexural stiffness increased by 4.7% and 4.4%, respectively. Furthermore, the flexural capacity, flexural stiffness, and crack spacing of the UHPGC beams were evaluated using existing methods. The results indicate that the existing methods can effectively predict flexural capacity and flexural stiffness in UHPGC beams but overestimate crack spacing. This study will provide a reference for the structural design of UHPGC.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Flexural response predictions for ultra-high-performance fibre-reinforced concrete beams
    Yang, In-Hwan
    Joh, Changbin
    Kim, Byung-Suk
    MAGAZINE OF CONCRETE RESEARCH, 2012, 64 (02) : 113 - 127
  • [22] Flexural Behavior of High-Strength Steel and Ultra-High-Performance Fiber-Reinforced Concrete Composite Beams
    Xia, Jun
    BUILDINGS, 2024, 14 (01)
  • [23] Numerical Study of the Shear Behavior of Ultra-High-Performance Concrete Beams
    Martinez-de la Concha, Antonio
    Rios, Jose David
    Cifuentes, Hector
    HORMIGON Y ACERO, 2024, 75 (302): : 157 - 162
  • [24] Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    Yoon, Young-Soo
    ENGINEERING STRUCTURES, 2016, 111 : 246 - 262
  • [25] Flexural behavior of reinforced high performance self-compacting alkali activated slag concrete beams
    Manjunath, R.
    Prashanth, M.H.
    Narasimhan, Mattur C.
    Bala Bharathi, U.K.
    Indian Concrete Journal, 2020, 94 (12): : 17 - 28
  • [26] Predicting the flexural behavior of ultra-high-performance fiber-reinforced concrete
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    Yoon, Young-Soo
    CEMENT & CONCRETE COMPOSITES, 2016, 74 : 71 - 87
  • [27] Flexural Behavior of Beams with Ultra High Performance Fiber Reinforced Concrete
    Turker, Kaan
    Birol, Tamer
    Yavas, Altug
    Hasgul, Umut
    Yazici, Halit
    TEKNIK DERGI, 2019, 30 (01): : 8777 - 8801
  • [28] Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete
    Kazemi, Farzin
    Shafighfard, Torkan
    Jankowski, Robert
    Yoo, Doo-Yeol
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2024, 25 (01)
  • [29] The effect of reinforcement ratio on the flexural performance of alkali-activated fly ash-based geopolymer concrete beam
    Zerfu, Kefiyalew
    Ekaputri, Januarti Jaya
    HELIYON, 2022, 8 (12)
  • [30] Experimental and numerical investigations on flexural performance of ultra-high-performance concrete (UHPC) beams with wet joints
    Feng, Zheng
    Li, Chuanxi
    Ke, Lu
    Yoo, Doo-Yeol
    STRUCTURES, 2022, 45 : 199 - 213