Establishing the function relationship between time spectrum and proton range in proton therapy through Monte Carlo simulation

被引:0
|
作者
He, Yibo [1 ,2 ]
Tong, Xin [1 ]
Li, Yuhan [1 ]
Cheng, Jingyi [3 ]
Zhou, Rong [1 ,2 ]
机构
[1] Sichuan Univ, Coll Phys, Chengdu, Peoples R China
[2] Sichuan Univ, MOE Key Lab Radiat Phys & Technol, Chengdu, Peoples R China
[3] Fudan Univ, Canc Hosp, Shanghai Proton & Heavy Ion Ctr, Dept Nucl Med, Shanghai, Peoples R China
基金
上海市自然科学基金; 国家重点研发计划;
关键词
proton therapy; range verification; prompt gamma-ray timing; Monte Carlo simulation; time of flight; VERIFICATION;
D O I
10.3389/fphy.2024.1295683
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To validate range shifts in proton therapy, we investigated the potential of using the temporal information of prompt gamma rays as an indicator. We simulated the proton transport process using Monte Carlo simulations and used a geometric scorer to obtain the location and timing of prompt gamma ray production. By using a homogeneous target material in the simulation model, we established a fitted relationship between the range of 90-210 MeV protons and the corresponding temporal spectral width. Additionally, by introducing air cavities of 2-20 mm in simulations of inhomogeneous target materials, we observed significant correlations between the range offsets and the temporal spectral widths. These correlations were fitted to derive a functional relationship between the two variables.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A Monte Carlo dose calculation algorithm for proton therapy
    Fippel, M
    Soukup, M
    MEDICAL PHYSICS, 2004, 31 (08) : 2263 - 2273
  • [42] Monte Carlo in the optimization of intensity modulated proton therapy
    Soukup, M.
    Alber, M.
    MEDICAL PHYSICS, 2007, 34 (06) : 2471 - 2471
  • [43] Monte Carlo simulation of a new proton therapy technique using bio-nanoparticles and high energy proton beams
    Ouar, M.
    Dib, A. S. Amine
    Belkaid, M. N.
    Belbachir, A. H.
    Ouar, Mohammed
    INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2022, 20 (03): : 615 - 619
  • [44] A Fast and Accurate GPU-Based Proton Transport Monte Carlo Simulation for Validating Proton Therapy Treatment Plans
    Tseung, H. Wan Chan
    Ma, J.
    Beltran, C.
    MEDICAL PHYSICS, 2014, 41 (06) : 410 - 410
  • [45] Monte Carlo computer simulation of a camera system for proton beam range verification in cancer treatment
    Sun, Xiao-Li
    Wang, Hui
    Li, Xin-Ke
    Cao, Guo-Hong
    Kuang, Yu
    Zhang, Xiao-Chen
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 (102): : 978 - 991
  • [46] Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA
    Lee, Chaeyeong
    Lee, Sangmin
    Lee, Seung-Jae
    Song, Hankyeol
    Kim, Dae-Hyun
    Cho, Sungkoo
    Jo, Kwanghyun
    Han, Youngyih
    Chung, Yong Hyun
    Kim, Jin Sung
    PLOS ONE, 2017, 12 (10):
  • [47] Study the Impact of Magnetic Field on Dosimetry of Proton Therapy Using Monte Carlo Simulation
    Ben Ali, A.
    Majoros, M.
    Zhang, X.
    Collings, E. W.
    Gupta, N.
    Sumption, M. D.
    Lu, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E538 - E538
  • [48] Meeting the Challenges of Quality Control in the TOPAS Monte Carlo Simulation Toolkit for Proton Therapy
    Hall, D.
    Perl, J.
    Schuemann, J.
    Faddegon, B.
    Paganetti, H.
    MEDICAL PHYSICS, 2016, 43 (06) : 3493 - 3494
  • [49] The Application of Cloud Computing in Pencil Beam Scanning Proton Therapy Monte Carlo Simulation
    Wang, Z.
    Gao, M.
    MEDICAL PHYSICS, 2014, 41 (06) : 296 - 296
  • [50] Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study
    Yoon, Do-Kun
    Jung, Joo-Young
    Suh, Tae Suk
    APPLIED PHYSICS LETTERS, 2014, 105 (22)