Fourier phase index for extracting signatures of determinism and nonlinear features in time series

被引:3
|
作者
Aguilar-Hernandez, Alberto Isaac [1 ,2 ]
Serrano-Solis, David Michel [3 ]
Rios-Herrera, Wady A. [4 ]
Zapata-Berruecos, Jose Fernando [5 ,6 ]
Vilaclara, Gloria [7 ]
Martinez-Mekler, Gustavo [2 ,3 ,8 ]
Muller, Markus F. [3 ,8 ,9 ]
机构
[1] Univ Autonoma Estadode Morelos, Inst Ciencias Bas & Aplicadas, Ave Univ 1001 Edificio 43, Cuernavaca 62209, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Ave Univ S-N, Cuernavaca 62210, Morelos, Mexico
[3] Univ Nacl Autonoma Mexico, Ctr Ciencias Complej C3, Ciudad Univ S-N, Ciudad De Mexico 04510, Mexico
[4] Univ Nacl Autonoma Mexico, Fac Psicol, Circuito Ciudad Univ Ave,CU, Ciudad De Mexico 04510, Mexico
[5] Inst Neurol Colombia, Unidad Neurofisiol Clin, Calle 55 46-36, Medellin, Antioquia, Colombia
[6] Escuela Grad Univ CES, Calle 10a 22, Medellin 050021, Antioquia, Colombia
[7] Univ Nacl Autonoma Mexico, Fac Estudios Super, Div Invest & Posgrad, Limnol Trop, Ciudad De Mexico 54090, Mexico
[8] Ctr Int Ciencias AC, Ave Univ 1001, Cuernavaca 62210, Morelos, Mexico
[9] Univ Autonoma Estado Morelos, Ctr Invest Ciencias, Ave Univ 1001, Cuernavaca 62209, Morelos, Mexico
关键词
CHAOS;
D O I
10.1063/5.0160555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Detecting determinism and nonlinear properties from empirical time series is highly nontrivial. Traditionally, nonlinear time series analysis is based on an error-prone phase space reconstruction that is only applicable for stationary, largely noise-free data from a low-dimensional system and requires the nontrivial adjustment of various parameters. We present a data-driven index based on Fourier phases that detects determinism at a well-defined significance level, without using Fourier transform surrogate data. It extracts nonlinear features, is robust to noise, provides time-frequency resolution by a double running window approach, and potentially distinguishes regular and chaotic dynamics. We test this method on data derived from dynamical models as well as on real-world data, namely, intracranial recordings of an epileptic patient and a series of density related variations of sediments of a paleolake in Tlaxcala, Mexico.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Extracting sinkhole features from time-series of TerraSAR-X/TanDEM-X data
    Vajedian, Sanaz
    Motagh, Mandi
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 150 : 274 - 284
  • [42] Construction and validation of paddy rice index using phenological features of SAR time series
    Zhang, Zhuo
    Yang, Na
    Qian, Jinliang
    Chen, Shengdong
    Liao, Hengsong
    Bao, Yunke
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (20): : 157 - 164
  • [43] Feature enhancement from nonlinear time series using linear-phase and nonlinear-phase time-delay fuzzy combiners
    Campbell, DA
    Cahill, LW
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 2, 1996, : 524 - 527
  • [44] Deciphering air quality index through sample entropy: A nonlinear time series analysis
    Swapna, M. S.
    Korte, D.
    Sankararaman, S.
    GONDWANA RESEARCH, 2024, 132 : 53 - 63
  • [45] Extracting Micro-Doppler Radar Signatures From Rotating Targets Using Fourier-Bessel Transform and Time-Frequency Analysis
    Suresh, P.
    Thayaparan, T.
    Obulesu, T.
    Venkataramaniah, K.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (06): : 3204 - 3210
  • [46] Extracting Phase Coupling Functions between Collectively Oscillating Networks from Time-Series Data
    Arai, Takahiro
    Kawamura, Yoji
    Aoyagi, Toshio
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (12)
  • [47] Identifying damage sensitive features using nonlinear time-series and bispectral analysis
    George, Debra
    Hunter, Norman
    Farrar, Charles
    Deen, Rebecca
    Proceedings of the International Modal Analysis Conference - IMAC, 2000, 2 : 1796 - 1802
  • [48] Identifying damage sensitive features using nonlinear time-series and bispectral analysis
    George, D
    Hunter, N
    Farrar, C
    Deen, R
    IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 1796 - 1802
  • [50] Prediction of chaotic time series by using adaptive higher-order nonlinear Fourier infrared filter
    Zhang, JS
    Xiao, XC
    ACTA PHYSICA SINICA, 2000, 49 (07) : 1221 - 1227