Fourier phase index for extracting signatures of determinism and nonlinear features in time series

被引:3
|
作者
Aguilar-Hernandez, Alberto Isaac [1 ,2 ]
Serrano-Solis, David Michel [3 ]
Rios-Herrera, Wady A. [4 ]
Zapata-Berruecos, Jose Fernando [5 ,6 ]
Vilaclara, Gloria [7 ]
Martinez-Mekler, Gustavo [2 ,3 ,8 ]
Muller, Markus F. [3 ,8 ,9 ]
机构
[1] Univ Autonoma Estadode Morelos, Inst Ciencias Bas & Aplicadas, Ave Univ 1001 Edificio 43, Cuernavaca 62209, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Ave Univ S-N, Cuernavaca 62210, Morelos, Mexico
[3] Univ Nacl Autonoma Mexico, Ctr Ciencias Complej C3, Ciudad Univ S-N, Ciudad De Mexico 04510, Mexico
[4] Univ Nacl Autonoma Mexico, Fac Psicol, Circuito Ciudad Univ Ave,CU, Ciudad De Mexico 04510, Mexico
[5] Inst Neurol Colombia, Unidad Neurofisiol Clin, Calle 55 46-36, Medellin, Antioquia, Colombia
[6] Escuela Grad Univ CES, Calle 10a 22, Medellin 050021, Antioquia, Colombia
[7] Univ Nacl Autonoma Mexico, Fac Estudios Super, Div Invest & Posgrad, Limnol Trop, Ciudad De Mexico 54090, Mexico
[8] Ctr Int Ciencias AC, Ave Univ 1001, Cuernavaca 62210, Morelos, Mexico
[9] Univ Autonoma Estado Morelos, Ctr Invest Ciencias, Ave Univ 1001, Cuernavaca 62209, Morelos, Mexico
关键词
CHAOS;
D O I
10.1063/5.0160555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Detecting determinism and nonlinear properties from empirical time series is highly nontrivial. Traditionally, nonlinear time series analysis is based on an error-prone phase space reconstruction that is only applicable for stationary, largely noise-free data from a low-dimensional system and requires the nontrivial adjustment of various parameters. We present a data-driven index based on Fourier phases that detects determinism at a well-defined significance level, without using Fourier transform surrogate data. It extracts nonlinear features, is robust to noise, provides time-frequency resolution by a double running window approach, and potentially distinguishes regular and chaotic dynamics. We test this method on data derived from dynamical models as well as on real-world data, namely, intracranial recordings of an epileptic patient and a series of density related variations of sediments of a paleolake in Tlaxcala, Mexico.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Application of nonlinear time series analysis in prediction of stock index
    Feng, Yu
    Chen, Ping
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 1998, 22 (01): : 82 - 85
  • [22] Single-index coefficient models for nonlinear time series
    Wu, Tracy Z.
    Lin, Haiqun
    Yu, Yan
    JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (01) : 37 - 58
  • [23] Extracting mass concentration time series features for classification of indoor and outdoor atmospheric particulates
    Lal Hussain
    Wajid Aziz
    Sharjil Saeed
    Muhammad Rafique
    Malik Sajjad Ahmed Nadeem
    Seong-O Shim
    Sania Aftar
    Jawad-ur-Rehman Pirzada
    Acta Geophysica, 2020, 68 : 945 - 963
  • [24] Extracting mass concentration time series features for classification of indoor and outdoor atmospheric particulates
    Hussain, Lal
    Aziz, Wajid
    Saeed, Sharjil
    Rafique, Muhammad
    Nadeem, Malik Sajjad Ahmed
    Shim, Seong-O
    Aftar, Sania
    Pirzada, Jawad-ur-Rehman
    ACTA GEOPHYSICA, 2020, 68 (03) : 945 - 963
  • [25] Extracting Nonlinear Dynamics from Psychological and Behavioral Time Series Through HAVOK Analysis
    Moulder, Robert G.
    Martynova, Elena
    Boker, Steven M.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2023, 58 (02) : 441 - 465
  • [26] The Fourier decomposition method for nonlinear and non-stationary time series analysis
    Singh, Pushpendra
    Joshi, Shiv Dutt
    Patney, Rakesh Kumar
    Saha, Kaushik
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2199):
  • [27] Nonlinear discrete Fourier transformer for the time series analysis and application to speech coding
    Dai, XH
    IEEE TENCON'97 - IEEE REGIONAL 10 ANNUAL CONFERENCE, PROCEEDINGS, VOLS 1 AND 2: SPEECH AND IMAGE TECHNOLOGIES FOR COMPUTING AND TELECOMMUNICATIONS, 1997, : 613 - 616
  • [28] A Flexible Time Power Grey Fourier Model for Nonlinear Seasonal Time Series and Its Applications
    Liu, Xiaomei
    Zhu, Jiannan
    Gao, Meina
    JOURNAL OF GREY SYSTEM, 2025, 37 (01):
  • [29] Dynamic Time Features Expanding and Extracting Method for Prediction Model of Sintering Process Quality Index
    Li, Yuxuan
    Yang, Chunjie
    Sun, Youxian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 1737 - 1745
  • [30] Extracting Features from Random Subseries: A Hybrid Pipeline for Time Series Classification and Extrinsic Regression
    Middlehurst, Matthew
    Bagnall, Anthony
    ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2023, 2023, 14343 : 113 - 126