Fourier phase index for extracting signatures of determinism and nonlinear features in time series

被引:3
|
作者
Aguilar-Hernandez, Alberto Isaac [1 ,2 ]
Serrano-Solis, David Michel [3 ]
Rios-Herrera, Wady A. [4 ]
Zapata-Berruecos, Jose Fernando [5 ,6 ]
Vilaclara, Gloria [7 ]
Martinez-Mekler, Gustavo [2 ,3 ,8 ]
Muller, Markus F. [3 ,8 ,9 ]
机构
[1] Univ Autonoma Estadode Morelos, Inst Ciencias Bas & Aplicadas, Ave Univ 1001 Edificio 43, Cuernavaca 62209, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Ave Univ S-N, Cuernavaca 62210, Morelos, Mexico
[3] Univ Nacl Autonoma Mexico, Ctr Ciencias Complej C3, Ciudad Univ S-N, Ciudad De Mexico 04510, Mexico
[4] Univ Nacl Autonoma Mexico, Fac Psicol, Circuito Ciudad Univ Ave,CU, Ciudad De Mexico 04510, Mexico
[5] Inst Neurol Colombia, Unidad Neurofisiol Clin, Calle 55 46-36, Medellin, Antioquia, Colombia
[6] Escuela Grad Univ CES, Calle 10a 22, Medellin 050021, Antioquia, Colombia
[7] Univ Nacl Autonoma Mexico, Fac Estudios Super, Div Invest & Posgrad, Limnol Trop, Ciudad De Mexico 54090, Mexico
[8] Ctr Int Ciencias AC, Ave Univ 1001, Cuernavaca 62210, Morelos, Mexico
[9] Univ Autonoma Estado Morelos, Ctr Invest Ciencias, Ave Univ 1001, Cuernavaca 62209, Morelos, Mexico
关键词
CHAOS;
D O I
10.1063/5.0160555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Detecting determinism and nonlinear properties from empirical time series is highly nontrivial. Traditionally, nonlinear time series analysis is based on an error-prone phase space reconstruction that is only applicable for stationary, largely noise-free data from a low-dimensional system and requires the nontrivial adjustment of various parameters. We present a data-driven index based on Fourier phases that detects determinism at a well-defined significance level, without using Fourier transform surrogate data. It extracts nonlinear features, is robust to noise, provides time-frequency resolution by a double running window approach, and potentially distinguishes regular and chaotic dynamics. We test this method on data derived from dynamical models as well as on real-world data, namely, intracranial recordings of an epileptic patient and a series of density related variations of sediments of a paleolake in Tlaxcala, Mexico.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Index method to detect determinism in time series
    Zhang, S. (surezhang4@163.com), 1600, Chinese Institute of Electronics (34):
  • [2] AUTO-EXTRACTING TECHNIQUE OF DYNAMIC CHAOS FEATURES FOR NONLINEAR TIME SERIES
    CHEN Guo College of Civil Aviation
    Chinese Journal of Mechanical Engineering, 2006, (04) : 524 - 529
  • [3] Extracting Texture Features for Time Series Classification
    Souza, Vinicius M. A.
    Silva, Diego F.
    Batista, Gustavo E. A. P. A.
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1425 - 1430
  • [4] Time series identification method for extracting structural features
    Nai, He
    Jiang, Hao
    2019 IEEE 5TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC) / IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2019, : 321 - 327
  • [5] Nonlinear determinism in time series measurements of two-dimensional turbulence
    Ragwitz, M
    Baroud, CN
    Plapp, BB
    Swinney, HL
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 162 (3-4) : 244 - 255
  • [6] Detecting the determinism of EEG time series using a nonlinear forecasting method
    Li, Ying-Jie
    Zhu, Yi-Sheng
    Fan, Fei-Yan
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 4538 - 4540
  • [7] Periodic Kernel Approximation by Index Set Fourier Series Features
    Tompkins, Anthony
    Ramos, Fabio
    35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019), 2020, 115 : 486 - 496
  • [8] On Fourier phases and their relevance for nonlinear time series analysis
    Martinez-Guerrero, Antonieta
    Aguado-Garcia, Alejandro
    Corsi-Cabrera, Maria
    Martinez-Mekler, Gustavo
    Olguin-Rodriguez, Paola, V
    Rios-Herrera, Wady A.
    Zapata-Berruecos, Jose Fernando
    Mueller, Markus F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 604
  • [9] On the calculation of chaotic features for nonlinear time series
    Behnia, Sohrab
    Akhshani, Afshin
    Mahniodi, Hadi
    Hobbenagi, Hassan
    CHINESE JOURNAL OF PHYSICS, 2008, 46 (04) : 394 - 404
  • [10] EVALUATION OF PHENOLOGY EXTRACTING METHODS FROM VEGETATION INDEX TIME SERIES
    Zhu, Wenquan
    Mou, Minjie
    Wang, Lingli
    Jiang, Nan
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1158 - 1161