ESTIMATION OF HOURLY PM2.5 MASS CONCENTRATION FROM GEOSTATIONARY SATELLITE AEROSOL OPTICAL DEPTH DATA

被引:0
|
作者
Sun, Yuxin [1 ]
Xue, Yong [1 ,2 ]
Cui, Tengfei [1 ]
Jiang, Xingxing [1 ]
Wu, Shuhui [1 ]
Jin, Chunlin [1 ]
机构
[1] China Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Univ Derby, Sch Elect Comp & Math, Coll Engn & Technol, Kedleston Rd, Derby DE22 1GB, England
基金
中国国家自然科学基金;
关键词
Remote Sensing; Geostationary satellite; PM2.5; AOD; PM10;
D O I
10.1109/IGARSS52108.2023.10283127
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Remote sensing inversion of global PM2.5 is an important research topic. In the present study, the Aerosol Optical Depth (AOD) dataset was established by four geostationary satellites to estimate global PM2.5 concentrations using improved Geographic Time-Weighted Regression model (IGTWR) models. Then a global hourly PM2.5 concentration dataset was obtained in May 2020. The estimated result for PM2.5 is verified at ground stations with R of 0.71 and RMSE (Root Mean Square Error) of 26.6 mu g/m(3). The results indicate that PM2.5 has obvious spatial and temporal distribution in the world.
引用
收藏
页码:1065 / 1067
页数:3
相关论文
共 50 条
  • [31] Hourly PM2.5 Concentration Monitoring With Spatiotemporal Continuity by the Fusion of Satellite and Station Observations
    Wu, Jingan
    Li, Tongwen
    Zhang, Chengyue
    Cheng, Qing
    Shen, Huanfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8019 - 8032
  • [32] Spatiotemporal estimation of hourly PM2.5 using AOD derived from geostationary satellite Fengyun-4A and machine learning models for Greater Bangkok
    Aman, Nishit
    Manomaiphiboon, Kasemsan
    Xian, Di
    Gao, Ling
    Tian, Lin
    Pala-En, Natchanok
    Wang, Yangjun
    Wangyao, Komsilp
    AIR QUALITY ATMOSPHERE AND HEALTH, 2024, 17 (07): : 1519 - 1534
  • [33] High-precision estimation of hourly PM2.5 concentration based on a grid scale of satellite-derived products
    Zhang, Miao
    Yuan, Lingyun
    ATMOSPHERIC POLLUTION RESEARCH, 2023, 14 (04)
  • [34] Monitoring PM2.5 Distributions over China from Geostationary Satellite Observations
    Weng, Fuzhong
    Huang, He
    Han, Xiuzhen
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5581 - 5583
  • [35] Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA
    Just, Allan C.
    De Carli, Margherita M.
    Shtein, Alexandra
    Dorman, Michael
    Lyapustin, Alexei
    Kloog, Itai
    REMOTE SENSING, 2018, 10 (05):
  • [36] Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations
    Lee, Hyung Joo
    Coull, Brent A.
    Bell, Michelle L.
    Koutrakis, Petros
    ENVIRONMENTAL RESEARCH, 2012, 118 : 8 - 15
  • [37] Predicting daily PM2.5 concentrations in Texas using high-resolution satellite aerosol optical depth
    Zhang, Xueying
    Chu, Yiyi
    Wang, Yuxuan
    Zhang, Kai
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 631-632 : 904 - 911
  • [38] An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan
    Kumar, Naresh
    Chu, Allen
    Foster, Andrew
    ATMOSPHERIC ENVIRONMENT, 2007, 41 (21) : 4492 - 4503
  • [39] Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands
    Schaap, M.
    Apituley, A.
    Timmermans, R. M. A.
    Koelemeijer, R. B. A.
    de Leeuw, G.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (03) : 909 - 925
  • [40] GOCI-II geostationary satellite hourly aerosol optical depth obtained by data-driven methods: Validation and comparison
    Fan, Yulong
    Sun, Lin
    Liu, Xirong
    ATMOSPHERIC ENVIRONMENT, 2023, 310