ESTIMATION OF HOURLY PM2.5 MASS CONCENTRATION FROM GEOSTATIONARY SATELLITE AEROSOL OPTICAL DEPTH DATA

被引:0
|
作者
Sun, Yuxin [1 ]
Xue, Yong [1 ,2 ]
Cui, Tengfei [1 ]
Jiang, Xingxing [1 ]
Wu, Shuhui [1 ]
Jin, Chunlin [1 ]
机构
[1] China Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Univ Derby, Sch Elect Comp & Math, Coll Engn & Technol, Kedleston Rd, Derby DE22 1GB, England
基金
中国国家自然科学基金;
关键词
Remote Sensing; Geostationary satellite; PM2.5; AOD; PM10;
D O I
10.1109/IGARSS52108.2023.10283127
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Remote sensing inversion of global PM2.5 is an important research topic. In the present study, the Aerosol Optical Depth (AOD) dataset was established by four geostationary satellites to estimate global PM2.5 concentrations using improved Geographic Time-Weighted Regression model (IGTWR) models. Then a global hourly PM2.5 concentration dataset was obtained in May 2020. The estimated result for PM2.5 is verified at ground stations with R of 0.71 and RMSE (Root Mean Square Error) of 26.6 mu g/m(3). The results indicate that PM2.5 has obvious spatial and temporal distribution in the world.
引用
收藏
页码:1065 / 1067
页数:3
相关论文
共 50 条
  • [21] DIURNAL VARIABILITY OF AEROSOL OPTICAL DEPTH AND FINE AEROSOL CONCENTRATION (PM2.5) ACCORDING TO MEASUREMENTS IN THE MIDDLE URALS
    Luzhetskaya, A. P.
    Poddubny, V. A.
    Shchelkanov, A. A.
    Omelkova, E. V.
    25TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2019, 11208
  • [22] Quantifying PM2.5 mass concentration and particle radius using satellite data and an optical-mass conversion algorithm
    Liu M.
    Zhou G.
    Saari R.K.
    Li S.
    Liu X.
    Li J.
    ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158 : 90 - 98
  • [23] Quantifying PM2.5 mass concentration and particle radius using satellite data and an optical-mass conversion algorithm
    Liu, Ming
    Zhou, Gaoxiang
    Saari, Rebecca K.
    Li, Sabrina
    Liu, Xiangnan
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 158 : 90 - 98
  • [24] Spatiotemporal relationship between Himawari-8 hourly columnar aerosol optical depth (AOD) and ground-level PM2.5 mass concentration in mainland China
    Xu, Qiangqiang
    Chen, Xiaoling
    Yang, Shangbo
    Tang, Linling
    Dong, Jiadan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 765
  • [25] ESTIMATION OF PM2.5 AND PM10 MASS CONCENTRATIONS IN MINING CITY CLUSTER FROM GAOFEN-1 AEROSOL OPTICAL DEPTH DATA AND CHEMICAL TRANSPORT MODEL
    Sun, Yuxin
    Xue, Yong
    Bai, Rui
    Cui, Tengfei
    Wu, Shuhui
    Jiang, Xingxing
    Jin, Chunlin
    Zhou, Xiran
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6678 - 6681
  • [26] Research progress, challenges, and prospects of PM2.5 concentration estimation using satellite data
    Zhu, Shoutao
    Tang, Jiayi
    Zhou, Xiaolu
    Li, Peng
    Liu, Zelin
    Zhang, Cicheng
    Zou, Ziying
    Li, Tong
    Peng, Changhui
    ENVIRONMENTAL REVIEWS, 2023, 31 (04): : 605 - 631
  • [27] Tracking hourly PM2.5 using geostationary satellite sensor images and multiscale spatiotemporal deep learning
    Wang, Zhige
    Zhang, Ce
    Ye, Su
    Lu, Rui
    Shangguan, Yulin
    Zhou, Tingyuan
    Atkinson, Peter M.
    Shi, Zhou
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 134
  • [28] Surface PM2.5 Estimate Using Satellite-Derived Aerosol Optical Depth over India
    Krishna, Rama K.
    Ghude, Sachin D.
    Kumar, Rajesh
    Beig, Gufran
    Kulkarni, Rachana
    Nivdange, Sandip
    Chate, Dilip
    AEROSOL AND AIR QUALITY RESEARCH, 2019, 19 (01) : 25 - 37
  • [29] Comparison of Four Ground-Level PM2.5 Estimation Models Using PARASOL Aerosol Optical Depth Data from China
    Guo, Hong
    Cheng, Tianhai
    Gu, Xingfa
    Chen, Hao
    Wang, Ying
    Zheng, Fengjie
    Xiang, Kunshen
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2016, 13 (02)
  • [30] Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing
    van Donkelaar, Aaron
    Martin, Randall V.
    Park, Rokjin J.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D21)