ESTIMATION OF HOURLY PM2.5 MASS CONCENTRATION FROM GEOSTATIONARY SATELLITE AEROSOL OPTICAL DEPTH DATA

被引:0
|
作者
Sun, Yuxin [1 ]
Xue, Yong [1 ,2 ]
Cui, Tengfei [1 ]
Jiang, Xingxing [1 ]
Wu, Shuhui [1 ]
Jin, Chunlin [1 ]
机构
[1] China Univ Min & Technol, Sch Environm & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Univ Derby, Sch Elect Comp & Math, Coll Engn & Technol, Kedleston Rd, Derby DE22 1GB, England
基金
中国国家自然科学基金;
关键词
Remote Sensing; Geostationary satellite; PM2.5; AOD; PM10;
D O I
10.1109/IGARSS52108.2023.10283127
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Remote sensing inversion of global PM2.5 is an important research topic. In the present study, the Aerosol Optical Depth (AOD) dataset was established by four geostationary satellites to estimate global PM2.5 concentrations using improved Geographic Time-Weighted Regression model (IGTWR) models. Then a global hourly PM2.5 concentration dataset was obtained in May 2020. The estimated result for PM2.5 is verified at ground stations with R of 0.71 and RMSE (Root Mean Square Error) of 26.6 mu g/m(3). The results indicate that PM2.5 has obvious spatial and temporal distribution in the world.
引用
收藏
页码:1065 / 1067
页数:3
相关论文
共 50 条
  • [1] Nowcasting Applications of Geostationary Satellite Hourly Surface PM2.5 Data
    Zhang, Hai
    Wei, Zigang
    Henderson, Barron H.
    Anenberg, Susan C.
    O'Dell, Katelyn
    Kondragunta, Shobha
    WEATHER AND FORECASTING, 2022, 37 (12) : 2313 - 2329
  • [2] Estimation of the PM2.5 and PM10 Mass Concentration over Land from FY-4A Aerosol Optical Depth Data
    Sun, Yuxin
    Xue, Yong
    Jiang, Xingxing
    Jin, Chunlin
    Wu, Shuhui
    Zhou, Xiran
    REMOTE SENSING, 2021, 13 (21)
  • [3] A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth
    Chu, Yuanyuan
    Liu, Yisi
    Li, Xiangyu
    Liu, Zhiyong
    Lu, Hanson
    Lu, Yuanan
    Mao, Zongfu
    Chen, Xi
    Li, Na
    Ren, Meng
    Liu, Feifei
    Tian, Liqiao
    Zhu, Zhongmin
    Xiang, Hao
    ATMOSPHERE, 2016, 7 (10)
  • [4] Estimating hourly PM2.5 concentrations in Beijing with satellite aerosol optical depth and a random forest approach
    Sun, Jin
    Gong, Jianhua
    Zhou, Jieping
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 762
  • [5] Improved estimation of PM2.5 using Lagrangian satellite-measured aerosol optical depth
    Saunders, Rolando O.
    Kahl, Jonathan D. W.
    Ghorai, Jugal K.
    ATMOSPHERIC ENVIRONMENT, 2014, 91 : 146 - 153
  • [6] Daily and Hourly Surface PM2.5 Estimation From Satellite AOD
    Zhang, Hai
    Kondragunta, Shobha
    EARTH AND SPACE SCIENCE, 2021, 8 (03)
  • [7] Hourly Ground-Level PM2.5 Estimation Using Geostationary Satellite and Reanalysis Data via Deep Learning
    Lee, Changsuk
    Lee, Kyunghwa
    Kim, Sangmin
    Yu, Jinhyeok
    Jeong, Seungtaek
    Yeom, Jongmin
    REMOTE SENSING, 2021, 13 (11)
  • [8] Estimation of PM2.5 from MODIS Aerosol Optical Depth Over the Indian Subcontinent
    Unnithan, S. L. Kesav
    Gnanappazham, L.
    APPLICATIONS OF GEOMATICS IN CIVIL ENGINEERING, 2020, 33 : 249 - 262
  • [9] The spatiotemporal relationship between PM2.5 and aerosol optical depth in China: influencing factors and implications for satellite PM2.5 estimations using MAIAC aerosol optical depth
    He, Qingqing
    Wang, Mengya
    Yim, Steve Hung Lam
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (24) : 18375 - 18391
  • [10] Estimating PM2.5 concentration from satellite derived aerosol optical depth and meteorological variables using a combination model
    Chelani, Asha B.
    ATMOSPHERIC POLLUTION RESEARCH, 2019, 10 (03) : 847 - 857