Defect suppression for high-efficiency kesterite CZTSSe solar cells: Advances and prospects

被引:37
|
作者
Wei, Hao [1 ,2 ]
Li, Yimeng [1 ,2 ]
Cui, Changcheng [1 ]
Wang, Xiao [1 ,3 ]
Shao, Zhipeng [1 ,3 ]
Pang, Shuping [1 ,3 ]
Cui, Guanglei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qingdao Ind Energy Storage Res Inst, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Shandong Energy Inst, Qingdao 266101, Peoples R China
基金
中国国家自然科学基金;
关键词
Defect suppression; Kesterite; CZTSSe; Thin-film solar cells; P-N HETEROJUNCTION; THIN-FILM; SECONDARY PHASE; BAND ALIGNMENT; FUTURE-PROSPECTS; GRAIN-BOUNDARIES; CHEMICAL ETCH; BUFFER LAYER; BACK CONTACT; CU2ZNSNS4;
D O I
10.1016/j.cej.2023.142121
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Comprising of earth-abundant, inexpensive, and environmentally friendly elements, kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells are demonstrated to have enormous potential to be an excellent alternative to the commercial Cu(In,Ga)(S,Se)2 (CIGSSe) and CdTe thin-film solar cells. However, the record power conversion efficiency (PCE) of CZTSSe is only 13.0%, which lags far behind state-of-the-art commercial thin-film solar cells (22%-23%). A wide variety of carrier recombination centers, including defects, defect clusters, and secondary phases, which cause nonradiative recombination of carriers and photovoltage loss of the CZTSSe device, is assumed to be the main arch-criminal for poor efficiency. This review focuses on frontier modification strategies to suppress charge recombination. The adverse effects caused by defects and secondary phases in kesterite CZTSSe thin-film solar cells are elucidated. Meanwhile, the recent advances in kesterite CZTSSe solar cells are summarized from extrinsic cation doping, interface engineering, and removal of secondary phases. Finally, the principles of improving the efficiency of CZTSSe are clarified.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] HIGH-EFFICIENCY GAAS SOLAR-CELLS
    KNECHTLI, RC
    LOO, RY
    KAMATH, GS
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1984, 31 (05) : 577 - 588
  • [42] HIGH-EFFICIENCY SILICON SOLAR-CELLS
    ILES, PA
    HO, FF
    SOLAR CELLS, 1986, 17 (01): : 65 - 73
  • [43] High-efficiency silicon space solar cells
    Suzuki, A
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 50 (1-4) : 289 - 303
  • [44] High-efficiency Silicon Solar Cells: A Review
    Lee, Youngseok
    Park, Cheolmin
    Balaji, Nagarajan
    Lee, Youn-Jung
    Dao, Vinh Ai
    ISRAEL JOURNAL OF CHEMISTRY, 2015, 55 (10) : 1050 - 1063
  • [45] HIGH-EFFICIENCY CONCENTRATOR SOLAR-CELLS
    FRAAS, LM
    CAPE, JA
    PARTAIN, LD
    MCLEOD, PS
    SOLAR CELLS, 1984, 12 (1-2): : 67 - 80
  • [46] High-efficiency tandem perovskite solar cells
    Colin D. Bailie
    Michael D. McGehee
    MRS Bulletin, 2015, 40 : 681 - 685
  • [47] High-Efficiency Crystalline Silicon Solar Cells
    Glunz, S. W.
    ADVANCES IN OPTOELECTRONICS, 2007, 2007
  • [48] High-efficiency tandem perovskite solar cells
    Bailie, Colin D.
    McGehee, Michael D.
    MRS BULLETIN, 2015, 40 (08) : 681 - 685
  • [49] Engineering the Band Offsets at the Back Contact Interface for Efficient Kesterite CZTSSe Solar Cells
    Zhang, Afei
    Song, Zhaoyang
    Zhou, Zhengji
    Deng, Yueqing
    Zhou, Wenhui
    Yuan, Shengjie
    Kou, Dongxing
    Zhang, Xin
    Qi, Yafang
    Wu, Sixin
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (11): : 10976 - 10982
  • [50] THE FUTURE OF HIGH-EFFICIENCY SOLAR-CELLS
    FAN, JCC
    SOLAR CELLS, 1984, 12 (1-2): : 51 - 62