Defect suppression for high-efficiency kesterite CZTSSe solar cells: Advances and prospects

被引:37
|
作者
Wei, Hao [1 ,2 ]
Li, Yimeng [1 ,2 ]
Cui, Changcheng [1 ]
Wang, Xiao [1 ,3 ]
Shao, Zhipeng [1 ,3 ]
Pang, Shuping [1 ,3 ]
Cui, Guanglei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qingdao Ind Energy Storage Res Inst, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Shandong Energy Inst, Qingdao 266101, Peoples R China
基金
中国国家自然科学基金;
关键词
Defect suppression; Kesterite; CZTSSe; Thin-film solar cells; P-N HETEROJUNCTION; THIN-FILM; SECONDARY PHASE; BAND ALIGNMENT; FUTURE-PROSPECTS; GRAIN-BOUNDARIES; CHEMICAL ETCH; BUFFER LAYER; BACK CONTACT; CU2ZNSNS4;
D O I
10.1016/j.cej.2023.142121
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Comprising of earth-abundant, inexpensive, and environmentally friendly elements, kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells are demonstrated to have enormous potential to be an excellent alternative to the commercial Cu(In,Ga)(S,Se)2 (CIGSSe) and CdTe thin-film solar cells. However, the record power conversion efficiency (PCE) of CZTSSe is only 13.0%, which lags far behind state-of-the-art commercial thin-film solar cells (22%-23%). A wide variety of carrier recombination centers, including defects, defect clusters, and secondary phases, which cause nonradiative recombination of carriers and photovoltage loss of the CZTSSe device, is assumed to be the main arch-criminal for poor efficiency. This review focuses on frontier modification strategies to suppress charge recombination. The adverse effects caused by defects and secondary phases in kesterite CZTSSe thin-film solar cells are elucidated. Meanwhile, the recent advances in kesterite CZTSSe solar cells are summarized from extrinsic cation doping, interface engineering, and removal of secondary phases. Finally, the principles of improving the efficiency of CZTSSe are clarified.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] High-Efficiency Perovskite Solar Cells
    Kim, Jin Young
    Lee, Jin-Wook
    Jung, Hyun Suk
    Shin, Hyunjung
    Park, Nam-Gyu
    CHEMICAL REVIEWS, 2020, 120 (15) : 7867 - 7918
  • [22] High-Efficiency Multijunction Solar Cells
    Frank Dimroth
    Sarah Kurtz
    MRS Bulletin, 2007, 32 : 230 - 235
  • [23] High-efficiency silicon solar cells
    Bouazzi, Ahmed S., 2000, IEEE, Piscataway, NJ, United States (19):
  • [24] High-efficiency multijunction solar cells
    Dimroth, Frank
    Kurtz, Sarah
    MRS BULLETIN, 2007, 32 (03) : 230 - 235
  • [25] The Interfacial Reaction at ITO Back Contact in Kesterite CZTSSe Bifacial Solar Cells
    Ge, Jie
    Chu, Junhao
    Jiang, Jinchun
    Yan, Yanfa
    Yang, Pingxiong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (12): : 3043 - 3052
  • [26] Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4 thin film solar cells
    高守帅
    姜振武
    武莉
    敖建平
    曾玉
    孙云
    张毅
    Chinese Physics B, 2018, (01) : 6 - 22
  • [27] Vapor-Phase Incorporation of Ge in CZTSe Absorbers for Improved Stability of High-Efficiency Kesterite Solar Cells
    Nowak, David
    Khonsor, Talat
    Pareek, Devendra
    Guetay, Levent
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [28] Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4 thin film solar cells
    Gao, Shoushuai
    Jiang, Zhenwu
    Wu, Li
    Ao, Jianping
    Zeng, Yu
    Sun, Yun
    Zhang, Yi
    CHINESE PHYSICS B, 2018, 27 (01)
  • [29] SnS-induced element diffusion Simultaneous optimization of interface and bulk defects in High-Efficiency CZTSSe solar cells
    Yang, Chenjun
    Siqin, Letu
    Wang, Yutian
    Li, Yufei
    Li, Wenbo
    Li, Shuyu
    Liu, Ruijian
    Luan, Hongmei
    Zhu, Chengjun
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [30] Flexible High-Efficiency CZTSSe Solar Cells on Diverse Flexible Substrates via an Adhesive-Bonding Transfer Method
    Min, Jung-Hong
    Jeong, Woo-Lim
    Kim, Kiyoung
    Lee, Je-Sung
    Kim, Kyung-Pil
    Kim, Jihun
    Gang, Myeng Gil
    Hong, Chang Woo
    Kim, Jin Hyeok
    Lee, Dong-Seon
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) : 8189 - 8197