ALGEBRAIC REALIZATION FOR CYCLIC GROUP ACTIONS

被引:0
|
作者
Dovermann, Karl Heinz [1 ]
Wasserman, Arthur G. [2 ]
机构
[1] Univ Hawaii, Dept Math, Honolulu, HI 96822 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
QUOTIENTS; SETS;
D O I
10.1007/s00031-022-09728-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose G is a finite cyclic group and M a closed smooth G-manifold. We will show that there is a nonsingular real algebraic G-variety X that is equivariantly diffeomorphic to M so that all G-vector bundles over X are strongly algebraic.
引用
收藏
页码:1561 / 1593
页数:33
相关论文
共 50 条
  • [21] Ergodicity of principal algebraic group actions
    Li, Hanfeng
    Peterson, Jesse
    Schmidt, Klaus
    RECENT TRENDS IN ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 631 : 201 - 210
  • [23] Markovian properties of continuous group actions: Algebraic actions, entropy and the homoclinic group
    Barbieri, Sebastian
    Garcia-Ramos, Felipe
    Li, Hanfeng
    ADVANCES IN MATHEMATICS, 2022, 397
  • [24] Cyclic homology and group actions
    Ponge, Raphael
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 123 : 30 - 52
  • [25] Factorial algebraic group actions and categorical quotients
    Arzhantsev, Ivan V.
    Celik, Devrim
    Hausen, Juergen
    JOURNAL OF ALGEBRA, 2013, 387 : 87 - 98
  • [26] Open algebraic surfaces with finite group actions
    Miyanishi M.
    Masuda K.
    Transformation Groups, 2002, 7 (2) : 185 - 207
  • [27] Group actions on algebraic stacks via butterflies
    Noohi, Behrang
    JOURNAL OF ALGEBRA, 2017, 486 : 36 - 63
  • [28] Stable affine models for algebraic group actions
    Reichstein, Z
    Vonessen, N
    JOURNAL OF LIE THEORY, 2004, 14 (02) : 563 - 568
  • [29] Invariants and separating morphisms for algebraic group actions
    Emilie Dufresne
    Hanspeter Kraft
    Mathematische Zeitschrift, 2015, 280 : 231 - 255
  • [30] Invariants and separating morphisms for algebraic group actions
    Dufresne, Emilie
    Kraft, Hanspeter
    MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) : 231 - 255