Achiral Magnetic Photonic Antenna as a Tunable Nanosource of Chiral Light

被引:0
|
作者
Cui, Lingfei [1 ]
Yang, Xingyu [1 ]
Reynier, Benoit [1 ]
Schwob, Catherine [1 ]
Bidault, Sebastien [2 ]
Gallas, Bruno [1 ]
Mivelle, Mathieu [1 ]
机构
[1] Sorbonne Univ, Inst Nanosci Paris, CNRS, INSP, F-75005 Paris, France
[2] Univ PSL, Inst Langevin, ESPCI Paris, CNRS, F-75005 Paris, France
关键词
magnetic dipole nanoantenna; superchiral light; plasmonics; nanophotonics; achiral nanostructures; CIRCULAR-DICHROISM; OPTICAL-FIELDS; NANOSTRUCTURES; SLIT;
D O I
10.1021/acsphotonics.3c00281
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sensitivity to molecular chirality is crucial for many fields, from biology and chemistry to the pharmaceutical industry. By generating superchiral light, nanophotonics has brought innovative solutions to reduce the detection volume and increase sensitivity at the cost of a nonselectivity of light chirality or a strong contribution to the background. Here, we theoretically propose a simple achiral plasmonic resonator based on a rectangular nanoslit in a thin metallic layer behaving as a magnetic dipole to generate a tunable nanosource of purely chiral light working from the UV to the infrared. This nanosource is free of any background, and the sign of its chirality is externally tunable in wavelength and polarization. These unique properties, resulting from the coupling between the incident wave and the magnetic dipolar character of our nanoantenna, coupled with a method of Fluorescent Detected Circular Dichroism (FDCD), shown to be 2 orders of magnitude more sensitive than classical circular dichroism measurements, thus provide a platform with deep subwavelength detection volumes for chiral molecules and a roadmap for optimizing the signal-to-noise ratios in circular dichroism measurements to reach single-molecule sensitivity.
引用
收藏
页码:3850 / 3857
页数:8
相关论文
共 50 条
  • [41] Tunable Slow Light with Large Bandwidth and Low-dispersion in Photonic Crystal Waveguide Infiltrated with Magnetic Fluids
    Lei, Weizheng
    Pu, Shengli
    JOURNAL OF MAGNETICS, 2015, 20 (02) : 110 - 113
  • [42] Preparation of chiral polydiacetylene film from achiral monomers using circularly polarized light
    Manaka, Takaaki
    Kon, Hideki
    Ohshima, Yuki
    Zou, Gang
    Iwamoto, Mitsumasa
    CHEMISTRY LETTERS, 2006, 35 (09) : 1028 - 1029
  • [43] Tunable properties of light propagation in photonic liquid crystal fibers
    Szaniawska, K.
    Nasilowski, T.
    Wolinski, T. R.
    Thienpont, H.
    OPTO-ELECTRONICS REVIEW, 2006, 14 (04) : 339 - 343
  • [44] Tunable slow light in 1-D photonic crystal
    Jahromi, Marzieh Asadnia Fard
    Bananej, Alireza
    OPTIK, 2016, 127 (09): : 3889 - 3891
  • [45] Analysis of light propagation in index-tunable photonic crystals
    Xiong, S
    Fukshima, H
    JOURNAL OF APPLIED PHYSICS, 2003, 94 (02) : 1286 - 1288
  • [46] Photonic band gap structures in 2D tunable magnetic photonic crystals
    Chunying, Guan
    Libo, Yuan
    PROCEEDINGS OF INTERNATIONAL SYMPOSIUM ON BIOPHOTONICS, NANOPHOTONICS AND METAMATERIALS, 2006, : 380 - +
  • [47] Chiral photonic crystals with an electrically tunable anisotropic defect. Experiment and theory
    R. B. Alaverdyan
    K. R. Allakhverdyan
    A. H. Gevorgyan
    A. D. Chilingaryan
    Yu. S. Chilingaryan
    Technical Physics, 2010, 55 : 1317 - 1323
  • [48] Modulating Energy Transfer and Light-Emitting Colors by Chiral Dye Exchange and Achiral-to-Chiral Dye Conversion
    Jia, Mingkai
    Zheng, Haifeng
    Zhang, Yongsheng
    Zhang, Xin
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (39)
  • [49] Magnetic surface plasmon-induced tunable photonic bandgaps in two-dimensional magnetic photonic crystals
    Jian Shen
    Shiyang Liu
    Rong Cao
    Xin Fan
    Junjie Du
    Huaiwu Zhang
    Zhifang Lin
    Siu-Tat Chui
    John Q. Xiao
    Applied Physics A, 2011, 105 : 789 - 793
  • [50] Magnetic surface plasmon-induced tunable photonic bandgaps in two-dimensional magnetic photonic crystals
    Shen, Jian
    Liu, Shiyang
    Cao, Rong
    Fan, Xin
    Du, Junjie
    Zhang, Huaiwu
    Lin, Zhifang
    Chui, Siu-Tat
    Xiao, John Q.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 105 (04): : 789 - 793