Achiral Magnetic Photonic Antenna as a Tunable Nanosource of Chiral Light

被引:0
|
作者
Cui, Lingfei [1 ]
Yang, Xingyu [1 ]
Reynier, Benoit [1 ]
Schwob, Catherine [1 ]
Bidault, Sebastien [2 ]
Gallas, Bruno [1 ]
Mivelle, Mathieu [1 ]
机构
[1] Sorbonne Univ, Inst Nanosci Paris, CNRS, INSP, F-75005 Paris, France
[2] Univ PSL, Inst Langevin, ESPCI Paris, CNRS, F-75005 Paris, France
关键词
magnetic dipole nanoantenna; superchiral light; plasmonics; nanophotonics; achiral nanostructures; CIRCULAR-DICHROISM; OPTICAL-FIELDS; NANOSTRUCTURES; SLIT;
D O I
10.1021/acsphotonics.3c00281
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sensitivity to molecular chirality is crucial for many fields, from biology and chemistry to the pharmaceutical industry. By generating superchiral light, nanophotonics has brought innovative solutions to reduce the detection volume and increase sensitivity at the cost of a nonselectivity of light chirality or a strong contribution to the background. Here, we theoretically propose a simple achiral plasmonic resonator based on a rectangular nanoslit in a thin metallic layer behaving as a magnetic dipole to generate a tunable nanosource of purely chiral light working from the UV to the infrared. This nanosource is free of any background, and the sign of its chirality is externally tunable in wavelength and polarization. These unique properties, resulting from the coupling between the incident wave and the magnetic dipolar character of our nanoantenna, coupled with a method of Fluorescent Detected Circular Dichroism (FDCD), shown to be 2 orders of magnitude more sensitive than classical circular dichroism measurements, thus provide a platform with deep subwavelength detection volumes for chiral molecules and a roadmap for optimizing the signal-to-noise ratios in circular dichroism measurements to reach single-molecule sensitivity.
引用
收藏
页码:3850 / 3857
页数:8
相关论文
共 50 条
  • [21] Photoresist Design for Elastomeric Light Tunable Photonic Devices
    Nocentini, Sara
    Martella, Daniele
    Parmeggiani, Camilla
    Wiersma, Diederik S.
    MATERIALS, 2016, 9 (07):
  • [22] Slow light in tunable low dispersion wide bandwidth photonic crystal waveguides infiltrated with magnetic fluids
    Guillan-Lorenzo, Omar
    Diaz-Otero, Francisco J.
    OPTICS COMMUNICATIONS, 2016, 359 : 49 - 52
  • [23] Chiral semiconductor photonic thin film with tunable circularly polarized luminescence
    Wu, Chaolumen
    Yin, Yadong
    MATTER, 2022, 5 (08) : 2466 - 2468
  • [24] Chiral Photonic Liquid Crystalline Polyethers with Widely Tunable Helical Superstructures
    Farooq, Muhammad Amjad
    Wei, Wei
    Xiong, Huiming
    LANGMUIR, 2020, 36 (12) : 3072 - 3079
  • [25] Tunable complex photonic chiral lattices by reconfigurable optical phase engineering
    Xavier, Jolly
    Joseph, Joby
    OPTICS LETTERS, 2011, 36 (03) : 403 - 405
  • [26] Electrically tunable chiral nematic liquid crystal photonic crystal fibers
    Petrov, M.
    Katranchev, B.
    Naradikian, H.
    Angelov, T.
    Panajotov, K.
    Zheltikov, A.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2007, 9 (02): : 446 - 448
  • [27] Nuclear Magnetic Resonance Signaling of Molecular Chiral Information Using an Achiral Reagent
    Shundo, Atsuomi
    Labuta, Jan
    Hill, Jonathan P.
    Ishihara, Shinsuke
    Ariga, Katsuhiko
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (27) : 9494 - +
  • [28] Generation and Manipulation of Tunable Chiral Structured Light Beams
    Ye Wenni
    Hu Juntao
    Ying Zhihao
    Wang Yishu
    Qian Yixian
    ACTA OPTICA SINICA, 2024, 44 (08)
  • [29] Magnetic-field tunable photonic stop band in metallodielectric photonic crystals
    Golosovsky, M
    Neve-Oz, Y
    Davidov, D
    SYNTHETIC METALS, 2003, 139 (03) : 705 - 709
  • [30] Two-dimensional tunable magnetic photonic crystals
    Kee, CS
    Kim, JE
    Park, HY
    Park, I
    Lim, H
    PHYSICAL REVIEW B, 2000, 61 (23) : 15523 - 15525