Ergodicity of increments of the Rosenblatt process and some consequences

被引:1
|
作者
Coupek, Petr [1 ]
Kriz, Pavel [1 ]
Maslowski, Bohdan [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Probabil & Math Stat, Sokolovska 49-83, Prague 8, Czech Republic
关键词
Rosenblatt process; mixing; variation; consistent estimator; random attractor; STOCHASTIC-EVOLUTION EQUATIONS; RANDOM DYNAMICAL-SYSTEMS; HURST INDEX; DRIVEN; CONVERGENCE; EXPANSION;
D O I
10.21136/CMJ.2024.0252-23
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new proof of the mixing property of the increments of Rosenblatt processes is given. The proof relies on infinite divisibility of the Rosenblatt law that allows to prove only the pointwise convergence of characteristic functions. Subsequently, the result is used to prove weak consistency of an estimator for the self-similarity parameter of a Rosenblatt process, and to prove the existence of a random attractor for a random dynamical system induced by a stochastic reaction-diffusion equation driven by additive Rosenblatt noise.
引用
收藏
页码:327 / 343
页数:17
相关论文
共 50 条
  • [31] SOME EVOLUTIONARY CONSEQUENCES OF THE MOLECULAR RECOMBINATION PROCESS
    LESLIE, JF
    WATT, WB
    TRENDS IN GENETICS, 1986, 2 (11) : 288 - 291
  • [32] Wavelet-based synthesis of the Rosenblatt process
    Abry, Patrice
    Pipiras, Vladas
    SIGNAL PROCESSING, 2006, 86 (09) : 2326 - 2339
  • [33] ON ERGODICITY OF SOME MARKOV PROCESSES
    Komorowski, Tomasz
    Peszat, Szymon
    Szarek, Tomasz
    ANNALS OF PROBABILITY, 2010, 38 (04): : 1401 - 1443
  • [34] On ergodicity of some cylinder flows
    Fraczek, K
    FUNDAMENTA MATHEMATICAE, 2000, 163 (02) : 117 - 130
  • [35] An approximation to the Rosenblatt process using martingale differences
    Chen, Chao
    Sun, Liya
    Yan, Litan
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (04) : 748 - 757
  • [36] On geometric ergodicity of the MTAR process
    Lee, O
    Shin, DW
    STATISTICS & PROBABILITY LETTERS, 2000, 48 (03) : 229 - 237
  • [37] CONVERGENCE OF THE INCREMENTS OF A WIENER PROCESS
    Bahram, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2014, 83 (01): : 113 - 118
  • [38] Approximating the Rosenblatt process by multiple Wiener integrals
    Yan, Litan
    Li, Yumiao
    Wu, Di
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20
  • [39] From intersection local time to the Rosenblatt process
    Bojdecki, Tomasz
    Gorostiza, Luis G.
    Talarczyk, Anna
    JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (03) : 1227 - 1249
  • [40] Wavelet-Type Expansion of the Rosenblatt Process
    Vladas Pipiras
    Journal of Fourier Analysis and Applications, 2004, 10 : 599 - 634