Ergodicity of increments of the Rosenblatt process and some consequences

被引:1
|
作者
Coupek, Petr [1 ]
Kriz, Pavel [1 ]
Maslowski, Bohdan [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Probabil & Math Stat, Sokolovska 49-83, Prague 8, Czech Republic
关键词
Rosenblatt process; mixing; variation; consistent estimator; random attractor; STOCHASTIC-EVOLUTION EQUATIONS; RANDOM DYNAMICAL-SYSTEMS; HURST INDEX; DRIVEN; CONVERGENCE; EXPANSION;
D O I
10.21136/CMJ.2024.0252-23
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new proof of the mixing property of the increments of Rosenblatt processes is given. The proof relies on infinite divisibility of the Rosenblatt law that allows to prove only the pointwise convergence of characteristic functions. Subsequently, the result is used to prove weak consistency of an estimator for the self-similarity parameter of a Rosenblatt process, and to prove the existence of a random attractor for a random dynamical system induced by a stochastic reaction-diffusion equation driven by additive Rosenblatt noise.
引用
收藏
页码:327 / 343
页数:17
相关论文
共 50 条
  • [21] Approximation of the Rosenblatt process by semimartingales
    Yan, Litan
    Li, Yumiao
    Wu, Di
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (09) : 4556 - 4578
  • [22] A weak convergence to rosenblatt process
    Sun, Xi-Chao
    Yan, Li-Tan
    Wang, Zhi
    Journal of Donghua University (English Edition), 2012, 29 (06) : 480 - 483
  • [23] Some Consequences (and Enablings) of Process Metaphysics
    Mark H. Bickhard
    Axiomathes, 2011, 21 : 3 - 32
  • [24] Some Consequences (and Enablings) of Process Metaphysics
    Bickhard, Mark H.
    AXIOMATHES, 2011, 21 (01): : 3 - 32
  • [25] SOME SAMPLE-FUNCTION PROPERTIES OF A PROCESS WITH STATIONARY INDEPENDENT INCREMENTS
    MITRA, SS
    ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (01): : 305 - &
  • [26] ERGODICITY OF THE ZIGZAG PROCESS
    Bierkens, Joris
    Roberts, Gareth O.
    Zitt, Pierre-Andre
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (04): : 2266 - 2301
  • [27] ON THE INCREMENTS OF THE WIENER PROCESS
    ORTEGA, J
    WSCHEBOR, M
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 65 (03): : 329 - 339
  • [28] ON THE INCREMENTS OF THE WIENER PROCESS
    WSCHEBOR, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (12): : 1293 - 1296
  • [29] PROPERTIES OF TRAJECTORIES OF A MULTIFRACTIONAL ROSENBLATT PROCESS
    Shevchenko, Georgii
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2010, 83 : 138 - 147
  • [30] Some new almost sure results on the functional increments of the uniform empirical process
    Varron, Davit
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (02) : 337 - 356