Solvability of a mixed problem with the integral gluing condition for a loaded equation with the Riemann-Liouville fractional operator

被引:3
|
作者
Baltaeva, Umida [1 ,2 ]
Babajanova, Yulduz [3 ]
Agarwal, Praveen [4 ,5 ]
Ozdemir, Necati [6 ]
机构
[1] Khorezm Mamun Acad, Khorezm, Uzbekistan
[2] Urgench State Univ, Dept Appl Math & Math Phys, Urgench, Uzbekistan
[3] Urgench State Univ, Dept Math Engn, Urgench, Uzbekistan
[4] Anand Int Coll Engn, Dept Math, Appl Nonlinear Sci Lab, Jaipur 303012, India
[5] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
[6] Balikesir Univ, Dept Math, Balikesir, Turkiye
关键词
Mixed type equation; Parabolic-hyperbolic type; Boundary -value problem; Integral condition; Riemann-Liouville fractional derivatives; BOUNDARY-VALUE PROBLEM;
D O I
10.1016/j.cam.2023.115066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study boundary value problems with an integral gluing condition for a loaded equation of parabolic-hyperbolic type. The existence and uniqueness of the problem under study are proved based on the unique solvability obtained from integral and loaded integral equations.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Solvability of a boundary value problem for a mixed-type equation with a partial Riemann-Liouville fractional derivative
    Kilbas, A. A.
    Repin, O. A.
    DIFFERENTIAL EQUATIONS, 2010, 46 (10) : 1457 - 1464
  • [2] Solvability of a boundary value problem for a mixed-type equation with a partial Riemann-Liouville fractional derivative
    A. A. Kilbas
    O. A. Repin
    Differential Equations, 2010, 46 : 1457 - 1464
  • [3] INEQUALITIES GENERATED WITH RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR
    Gurbuz, M.
    Ozturk, O.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 91 - 100
  • [4] ON A PROBLEM FOR MIXED TYPE EQUATION WITH PARTIAL RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
    Repin, O. A.
    Tarasenko, A. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2016, 20 (04): : 636 - 643
  • [5] Investigation of the Cauchy problem for one fractional order equation with the Riemann-Liouville operator
    Hasanov, I. I.
    Akramova, D. I.
    Rahmonov, A. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2023, 27 (01): : 64 - 80
  • [6] ON RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR OF A GENERAL CLASS OF FUNCTIONS
    Kumar, Virendra
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2019, 18 (3-4): : 193 - 199
  • [7] BOUNDEDNESS OF RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR IN MORREY SPACES
    Senouci, M. A.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (01): : 82 - 91
  • [8] Inversion of the Riemann-Liouville Integral Operator and Application to Abel Equation
    Vainikko, Gennadi
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [9] SOLVABILITY OF THE CAUCHY PROBLEM FOR EQUATIONS WITH RIEMANN-LIOUVILLE'S FRACTIONAL DERIVATIVES
    Zabreiko, Petr P.
    Ponomareva, Svetlana, V
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2018, 62 (04): : 391 - 397
  • [10] An operator theoretical approach to Riemann-Liouville fractional Cauchy problem
    Mei, Zhan-Dong
    Peng, Ji-Gen
    Zhang, Yang
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (07) : 784 - 797