Lossy Scientific Data Compression With SPERR

被引:7
|
作者
Li, Shaomeng [1 ]
Lindstrom, Peter [2 ]
Clyne, John [1 ]
机构
[1] Natl Ctr Atmospher Res, Boulder, CO 80305 USA
[2] Lawrence Livermore Natl Lab, Lawrence, KS USA
基金
美国国家科学基金会;
关键词
MULTILEVEL TECHNIQUES; IMAGE COMPRESSION; EFFICIENT; REDUCTION; QUANTIZATION;
D O I
10.1109/IPDPS54959.2023.00104
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
As the need for data reduction in high-performance computing (HPC) continues to grow, we introduce a new and highly effective tool to help achieve this goal-SPERR. SPERR is a versatile lossy compressor for structured scientific data; it is built on top of an advanced wavelet compression algorithm, SPECK, and provides additional capabilities valued in HPC environments. These capabilities include parallel execution for large volumes and a compression mode that satisfies a maximum point-wise error tolerance. Evaluation shows that in most settings SPERR achieves the best rate-distortion trade-off among current popular lossy scientific data compressors.
引用
收藏
页码:1007 / 1017
页数:11
相关论文
共 50 条
  • [21] Lossy compression of haptic data
    Ortega, A
    Liu, YF
    TOUCH IN VIRTUAL ENVIRONMENTS: HAPTICS AND THE DESIGN OF INTERACTIVE SYSTEMS, 2002, : 119 - 136
  • [22] Lossy compression of elevation data
    Franklin, WR
    Said, A
    ADVANCES IN GIS RESEARCH II, 1997, : 519 - 531
  • [23] Optimizing Error-Bounded Lossy Compression for Scientific Data by Dynamic Spline Interpolation
    Zhao, Kai
    Di, Sheng
    Dmitriev, Maxim
    Tonellot, Thierry-Laurent D.
    Chen, Zizhong
    Cappello, Franck
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 1643 - 1654
  • [24] Multifacets of lossy compression for scientific data in the Joint-Laboratory of Extreme Scale Computing
    Cappello, Franck
    Acosta, Mario
    Agullo, Emmanuel
    Anzt, Hartwig
    Calhoun, Jon
    Di, Sheng
    Giraud, Luc
    Gruetzmacher, Thomas
    Jin, Sian
    Sano, Kentaro
    Sato, Kento
    Singh, Amarjit
    Tao, Dingwen
    Tian, Jiannan
    Ueno, Tomohiro
    Underwood, Robert
    Vivien, Frederic
    Yepes, Xavier
    Kazutomo, Yoshii
    Zhang, Boyuan
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 163
  • [25] A Data-driven Approach to Harvesting Latent Reduced Models to Precondition Lossy Compression for Scientific Data
    Luo, Huizhang
    Wang, Junqi
    Qin, Zhenlu
    Huang, Dan
    Liu, Qing
    Zhou, Mengchu
    Jiang, Hong
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (03) : 949 - 963
  • [26] Fast and Effective Lossy Compression Algorithms for Scientific Datasets
    Iverson, Jeremy
    Kamath, Chandrika
    Karypis, George
    EURO-PAR 2012 PARALLEL PROCESSING, 2012, 7484 : 843 - 856
  • [27] Improvements on data hiding for lossy compression
    Sencar, HT
    Akansu, AN
    Ramkumar, M
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 3449 - 3452
  • [28] Fractal Image Compression Method for Lossy Data Compression
    Artuger, Firat
    Ozkaynak, Fatih
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP), 2018,
  • [29] Efficient Lossy Compression of Ultrasound Data
    Kleparnik, Petr
    Zemcik, Pavel
    Jaros, Jiri
    2017 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2017, : 232 - 237
  • [30] Lossy Compression for Visualization of Atmospheric Data
    Semeraro, Dave
    Orf, Leigh
    2021 IEEE 11TH SYMPOSIUM ON LARGE DATA ANALYSIS AND VISUALIZATION (LDAV 2021), 2021, : 86 - 87