Multifacets of lossy compression for scientific data in the Joint-Laboratory of Extreme Scale Computing

被引:1
|
作者
Cappello, Franck [1 ]
Acosta, Mario [10 ]
Agullo, Emmanuel [9 ]
Anzt, Hartwig [12 ]
Calhoun, Jon [7 ]
Di, Sheng [2 ]
Giraud, Luc [9 ]
Gruetzmacher, Thomas [12 ]
Jin, Sian [4 ]
Sano, Kentaro [8 ]
Sato, Kento [8 ]
Singh, Amarjit [8 ]
Tao, Dingwen [5 ]
Tian, Jiannan [6 ]
Ueno, Tomohiro [8 ]
Underwood, Robert [3 ]
Vivien, Frederic [9 ]
Yepes, Xavier [11 ]
Kazutomo, Yoshii [1 ]
Zhang, Boyuan [6 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Argonne Natl Lab, Math & Comp Sci MCS Div, Lemont, IL USA
[3] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL USA
[4] Indiana Univ, Bloomington, IN USA
[5] Indiana Univ, HighPerformance Data Analyt & Comp Lab, Bloomington, IN USA
[6] Indiana Univ, Intelligent Syst Engn, Bloomington, IN USA
[7] Clemson Univ, Holcombe Dept Elect & Comp Engn, Clemson, SC USA
[8] RIKEN, Ctr Computat Sci, Kobe, Japan
[9] Natl Res Inst Comp & Automat, Lyon, France
[10] Barcelona Supercomp Ctr, Earth Sci Dept, Computat Grp, Barcelona, Spain
[11] Barcelona Supercomp Ctr, Barcelona, Spain
[12] Karlsruhe Inst Technol, Karlsruhe, Germany
基金
美国国家科学基金会;
关键词
Lossy compression; Scientific data; Compression for AI; GPU acceleration; I/O scheduling; EARTH SYSTEM MODEL; GMRES; SIMULATION; I/O;
D O I
10.1016/j.future.2024.05.022
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Joint Laboratory on Extreme-Scale Computing (JLESC) was initiated at the same time lossy compression for scientific data became an important topic for the scientific communities. The teams involved in the JLESC played and are still playing an important role in developing the research, techniques, methods, and technologies making lossy compression for scientific data a key tool for scientists and engineers. In this paper, we present the evolution of lossy compression for scientific data from 2015, describing the situation before the JLESC started, the evolution of this discipline in the past 8 years (until 2023) through the prism of the JLESC collaborations on this topic and some of the remaining open research questions.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Preface of Special Issue on Highlights from the Joint-Laboratory on Extreme Scale Computing
    Cappello, Franck
    Partzsch, Ruth
    Katz, Daniel S.
    Tomov, Stanimire
    Gaikwad, Shreyas Sunil
    Nar-ayanan, Sri Hari Krishna
    Campin, Jean-Michel
    Pillar, Helen
    Nguyen, An
    Hovland, Paul
    Heimbach, Patrick
    Ruiz, Juan Miguel de Haro
    Ringlein, Daniel khard
    Mendez, Sandra
    Mercadal, Estanislao
    Visser, Anke
    Garci, Marta
    Ahmed, Iftekhar
    Poole, Marshall Scott
    Norman, Emily
    Simpson, Elizabeth
    Cappello, Franck
    Partzsch, Ruth
    Katz, Daniel S.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 167
  • [2] Lossy Scientific Data Compression With SPERR
    Li, Shaomeng
    Lindstrom, Peter
    Clyne, John
    2023 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, IPDPS, 2023, : 1007 - 1017
  • [3] Extreme Data-Intensive Scientific Computing
    Szalay, Alexander S.
    COMPUTING IN SCIENCE & ENGINEERING, 2011, 13 (06) : 34 - 41
  • [4] Understanding and Modeling Lossy Compression Schemes on HPC Scientific Data
    Lu, Tao
    Liu, Qing
    He, Xubin
    Luo, Huizhang
    Suchyta, Eric
    Choi, Jong
    Podhorszki, Norbert
    Klasky, Scott
    Wolf, Mathew
    Liu, Tong
    Qiao, Zhenbo
    2018 32ND IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2018, : 348 - 357
  • [5] Improving Performance of Data Dumping with Lossy Compression for Scientific Simulation
    Liang, Xin
    Di, Sheng
    Tao, Dingwen
    Li, Sihuan
    Nicolae, Bogdan
    Chen, Zizhong
    Cappello, Franck
    2019 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2019, : 340 - 350
  • [6] Runtime Verification of Scientific Computing: Towards an Extreme Scale
    Minh Ngoc Dinh
    Jin, Chao
    Abramson, David
    Jeffery, Clinton L.
    PROCEEDINGS OF ESPT 2016: 5TH WORKSHOP ON EXTREME-SCALE PROGRAMMING TOOLS, 2016, : 26 - 33
  • [7] Lossy compression of scientific spacecraft data using wavelets. Application to the CASSINI spacecraft data compression
    Belmon, L.
    Benoit-Cattin, Hugues
    Baskurt, A.
    Bougeret, J.-L.
    1600, EDP Sciences (386):
  • [8] Lossy compression of scientific spacecraft data using wavelets. Application to the CASSINI spacecraft data compression
    Belmon, L
    Benoit-Cattin, H
    Baskurt, A
    Bougeret, JL
    ASTRONOMY & ASTROPHYSICS, 2002, 386 (03): : 1143 - 1152
  • [9] Lossy compression of scientific simulation data: from visualization to checkpoint/restart
    Cappello, Franck
    2018 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2018), 2018, : 1205 - 1205
  • [10] DPZ: Improving Lossy Compression Ratio with Information Retrieval on Scientific Data
    Zhang, Jialing
    Chen, Jiaxi
    Zhuo, Xiaoyan
    Moon, Aekyeung
    Son, Seung Woo
    2021 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2021), 2021, : 320 - 331