Multifacets of lossy compression for scientific data in the Joint-Laboratory of Extreme Scale Computing

被引:1
|
作者
Cappello, Franck [1 ]
Acosta, Mario [10 ]
Agullo, Emmanuel [9 ]
Anzt, Hartwig [12 ]
Calhoun, Jon [7 ]
Di, Sheng [2 ]
Giraud, Luc [9 ]
Gruetzmacher, Thomas [12 ]
Jin, Sian [4 ]
Sano, Kentaro [8 ]
Sato, Kento [8 ]
Singh, Amarjit [8 ]
Tao, Dingwen [5 ]
Tian, Jiannan [6 ]
Ueno, Tomohiro [8 ]
Underwood, Robert [3 ]
Vivien, Frederic [9 ]
Yepes, Xavier [11 ]
Kazutomo, Yoshii [1 ]
Zhang, Boyuan [6 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Argonne Natl Lab, Math & Comp Sci MCS Div, Lemont, IL USA
[3] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL USA
[4] Indiana Univ, Bloomington, IN USA
[5] Indiana Univ, HighPerformance Data Analyt & Comp Lab, Bloomington, IN USA
[6] Indiana Univ, Intelligent Syst Engn, Bloomington, IN USA
[7] Clemson Univ, Holcombe Dept Elect & Comp Engn, Clemson, SC USA
[8] RIKEN, Ctr Computat Sci, Kobe, Japan
[9] Natl Res Inst Comp & Automat, Lyon, France
[10] Barcelona Supercomp Ctr, Earth Sci Dept, Computat Grp, Barcelona, Spain
[11] Barcelona Supercomp Ctr, Barcelona, Spain
[12] Karlsruhe Inst Technol, Karlsruhe, Germany
基金
美国国家科学基金会;
关键词
Lossy compression; Scientific data; Compression for AI; GPU acceleration; I/O scheduling; EARTH SYSTEM MODEL; GMRES; SIMULATION; I/O;
D O I
10.1016/j.future.2024.05.022
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Joint Laboratory on Extreme-Scale Computing (JLESC) was initiated at the same time lossy compression for scientific data became an important topic for the scientific communities. The teams involved in the JLESC played and are still playing an important role in developing the research, techniques, methods, and technologies making lossy compression for scientific data a key tool for scientists and engineers. In this paper, we present the evolution of lossy compression for scientific data from 2015, describing the situation before the JLESC started, the evolution of this discipline in the past 8 years (until 2023) through the prism of the JLESC collaborations on this topic and some of the remaining open research questions.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Six Degrees of Scientific Data: Reading Patterns for Extreme Scale Science IO
    Lofstead, Jay
    Polte, Milo
    Gibson, Garth
    Klasky, Scott A.
    Schwan, Karsten
    Oldfield, Ron
    Wolf, Matthew
    Liu, Qing
    HPDC 11: PROCEEDINGS OF THE 20TH INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE DISTRIBUTED COMPUTING, 2011, : 49 - 60
  • [42] Significantly Improving Lossy Compression for Scientific Data Sets Based on Multidimensional Prediction and Error-Controlled Quantization
    Tao, Dingwen
    Di, Sheng
    Chen, Zizhong
    Cappello, Franck
    2017 31ST IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2017, : 1129 - 1139
  • [43] Task offloading for edge computing in industrial Internet with joint data compression and security protection
    Wang, Zhongmin
    Ding, Yurong
    Jin, Xiaomin
    Chen, Yanping
    Gao, Cong
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (04): : 4291 - 4317
  • [44] Task offloading for edge computing in industrial Internet with joint data compression and security protection
    Zhongmin Wang
    Yurong Ding
    Xiaomin Jin
    Yanping Chen
    Cong Gao
    The Journal of Supercomputing, 2023, 79 : 4291 - 4317
  • [45] An Algorithmic and Software Pipeline for Very Large Scale Scientific Data Compression with Error Guarantees
    Banerjee, Tania
    Choi, Jong
    Lee, Jaemoon
    Gong, Qian
    Wang, Ruonan
    Klasky, Scott
    Rangarajan, Anand
    Ranka, Sanjay
    2022 IEEE 29TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA, AND ANALYTICS, HIPC, 2022, : 226 - 235
  • [46] Topic 14+16: High-Performance and Scientific Applications and Extreme-Scale Computing (Introduction)
    Downes, Turlough P.
    Roller, Sabine
    Seitsonen, Ari P.
    Valcke, Sophie
    Keyes, David
    Sawley, Marie-Christine
    Schulthess, Thomas
    Shalf, John
    EURO-PAR 2013 PARALLEL PROCESSING, 2013, 8097 : 737 - 738
  • [47] Joint Optimization of Transmission Bandwidth Allocation and Data Compression for Mobile-Edge Computing Systems
    Wang, Jun-Bo
    Zhang, Jinyuexue
    Ding, Changfeng
    Zhang, Hua
    Lin, Min
    Wang, Jiangzhou
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (10) : 2245 - 2249
  • [48] Joint Optimization of Computation Offloading, Data Compression, Energy Harvesting, and Application Scenarios in Fog Computing
    Bai, Wenle
    Ma, Ziyang
    Han, Yulong
    Wu, Menglong
    Zhao, Zhongyuan
    Li, Mengkun
    Wang, Chengcai
    IEEE ACCESS, 2021, 9 : 45462 - 45473
  • [49] FRaZ: A Generic High-Fidelity Fixed-Ratio Lossy Compression Framework for Scientific Floating-point Data
    Underwood, Robert
    Di, Sheng
    Calhoun, Jon C.
    Cappello, Franck
    2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM IPDPS 2020, 2020, : 567 - 577
  • [50] Joint Optimization of Execution Latency and Energy Consumption for Mobile Edge Computing with Data Compression and Task Allocation
    Minh Hoang Ly
    Thinh Quang Dinh
    Ha Hoang Kha
    2019 INTERNATIONAL SYMPOSIUM ON ELECTRICAL AND ELECTRONICS ENGINEERING (ISEE 2019), 2019, : 113 - 118