Multifacets of lossy compression for scientific data in the Joint-Laboratory of Extreme Scale Computing

被引:1
|
作者
Cappello, Franck [1 ]
Acosta, Mario [10 ]
Agullo, Emmanuel [9 ]
Anzt, Hartwig [12 ]
Calhoun, Jon [7 ]
Di, Sheng [2 ]
Giraud, Luc [9 ]
Gruetzmacher, Thomas [12 ]
Jin, Sian [4 ]
Sano, Kentaro [8 ]
Sato, Kento [8 ]
Singh, Amarjit [8 ]
Tao, Dingwen [5 ]
Tian, Jiannan [6 ]
Ueno, Tomohiro [8 ]
Underwood, Robert [3 ]
Vivien, Frederic [9 ]
Yepes, Xavier [11 ]
Kazutomo, Yoshii [1 ]
Zhang, Boyuan [6 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Argonne Natl Lab, Math & Comp Sci MCS Div, Lemont, IL USA
[3] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL USA
[4] Indiana Univ, Bloomington, IN USA
[5] Indiana Univ, HighPerformance Data Analyt & Comp Lab, Bloomington, IN USA
[6] Indiana Univ, Intelligent Syst Engn, Bloomington, IN USA
[7] Clemson Univ, Holcombe Dept Elect & Comp Engn, Clemson, SC USA
[8] RIKEN, Ctr Computat Sci, Kobe, Japan
[9] Natl Res Inst Comp & Automat, Lyon, France
[10] Barcelona Supercomp Ctr, Earth Sci Dept, Computat Grp, Barcelona, Spain
[11] Barcelona Supercomp Ctr, Barcelona, Spain
[12] Karlsruhe Inst Technol, Karlsruhe, Germany
基金
美国国家科学基金会;
关键词
Lossy compression; Scientific data; Compression for AI; GPU acceleration; I/O scheduling; EARTH SYSTEM MODEL; GMRES; SIMULATION; I/O;
D O I
10.1016/j.future.2024.05.022
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Joint Laboratory on Extreme-Scale Computing (JLESC) was initiated at the same time lossy compression for scientific data became an important topic for the scientific communities. The teams involved in the JLESC played and are still playing an important role in developing the research, techniques, methods, and technologies making lossy compression for scientific data a key tool for scientists and engineers. In this paper, we present the evolution of lossy compression for scientific data from 2015, describing the situation before the JLESC started, the evolution of this discipline in the past 8 years (until 2023) through the prism of the JLESC collaborations on this topic and some of the remaining open research questions.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Parallel Tensor Compression for Large-Scale Scientific Data
    Austin, Woody
    Ballard, Grey
    Kolda, Tamara G.
    2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2016), 2016, : 912 - 922
  • [32] Mesh data management in large-scale scientific computing
    Chen, Hong
    Zheng, Winmin
    PROCEEDINGS OF THE THIRD CHINAGRID ANNUAL CONFERENCE, 2008, : 144 - 152
  • [33] WAVESZ: A Hardware-Algorithm Co-Design of Efficient Lossy Compression for Scientific Data
    Tian, Jiannan
    Di, Sheng
    Zhang, Chengming
    Liang, Xin
    Jin, Sian
    Cheng, Dazhao
    Tao, Dingwen
    Cappello, Franck
    PROCEEDINGS OF THE 25TH ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING (PPOPP '20), 2020, : 74 - 88
  • [34] Extreme Data Science at the National Energy Research Scientific Computing (NERSC) Center
    Dosanjh, Sudip
    Canon, Shane
    Deslippe, Jack
    Fagnan, Kjiersten
    Gerber, Richard
    Gerhardt, Lisa
    Hick, Jason
    Jacobsen, Douglas
    Skinner, David
    Wright, Nicholas J.
    PARALLEL COMPUTING: ACCELERATING COMPUTATIONAL SCIENCE AND ENGINEERING (CSE), 2014, 25 : 3 - 18
  • [35] Big data and extreme-scale computing: Pathways to Convergence-Toward a shaping strategy for a future software and data ecosystem for scientific inquiry
    Asch, M.
    Moore, T.
    Badia, R.
    Beck, M.
    Beckman, P.
    Bidot, T.
    Bodin, F.
    Cappello, F.
    Choudhary, A.
    de Supinski, B.
    Deelman, E.
    Dongarra, J.
    Dubey, A.
    Fox, G.
    Fu, H.
    Girona, S.
    Gropp, W.
    Heroux, M.
    Ishikawa, Y.
    Keahey, K.
    Keyes, D.
    Kramer, W.
    Lavignon, J-F
    Lu, Y.
    Matsuoka, S.
    Mohr, B.
    Reed, D.
    Requena, S.
    Saltz, J.
    Schulthess, T.
    Stevens, R.
    Swany, M.
    Szalay, A.
    Tang, W.
    Varoquaux, G.
    Vilotte, J-P
    Wisniewski, R.
    Xu, Z.
    Zacharov, I.
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2018, 32 (04): : 435 - 479
  • [36] On a Storage System Software Stack for Extreme Scale Data Centric Computing
    Narasimhamurthy, Sai
    2017 46TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS (ICPPW), 2017, : 228 - 230
  • [37] Data Provenance Hybridization Supporting Extreme-Scale Scientific WorkflowApplications
    Elsethagen, Todd
    Stephan, Eric
    Raju, Bibi
    Schram, Malachi
    MacDuff, Matt
    Kerbyson, Darrern
    van Dam, Kerstin Kleese
    Singh, Alok
    Altintas, Ilkay
    2016 NEW YORK SCIENTIFIC DATA SUMMIT (NYSDS), 2016,
  • [38] FusionFS: Toward Supporting Data-Intensive Scientific Applications on Extreme-Scale High-Performance Computing Systems
    Zhao, Dongfang
    Zhang, Zhao
    Zhou, Xiaobing
    Li, Tonglin
    Wang, Ke
    Kimpe, Dries
    Carns, Philip
    Ross, Robert
    Raicu, Ioan
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 61 - 70
  • [39] cuSZ: An Efficient GPU-Based Error-Bounded Lossy Compression Framework for Scientific Data
    Tian, Jiannan
    Di, Sheng
    Zhao, Kai
    Rivera, Cody
    Fulp, Megan Hickman
    Underwood, Robert
    Jin, Sian
    Liang, Xin
    Calhoun, Jon
    Tao, Dingwen
    Cappello, Franck
    PACT '20: PROCEEDINGS OF THE ACM INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES, 2020, : 3 - 15
  • [40] Unbalanced Parallel I/O: An Often-Neglected Side Effect of Lossy Scientific Data Compression
    Wang, Xinying
    Wan, Lipeng
    Chen, Jieyang
    Gong, Qian
    Whitney, Ben
    Wang, Jinzhen
    Gainaru, Ana
    Liu, Qing
    Podhorszki, Norbert
    Zhao, Dongfang
    Yan, Feng
    Klasky, Scott
    PROCEEDINGS OF THE 7TH INTERNATIONAL WORKSHOP ON DATA ANALYSIS AND REDUCTION FOR BIG SCIENTIFIC DATA (DRBSD-7), 2021, : 26 - 32