Well-designed glucose precursor carbon/g-C3N4 nanocomposite for enhanced visible light photocatalytic CO2 reduction activity

被引:10
|
作者
Bafaqeer, Abdullah [1 ]
Amin, Nor Aishah Saidina [2 ]
Ummer, Aniz Chennampilly [1 ]
Ahmed, Shakeel [1 ]
Al-Qathmi, Ahmed T. [1 ]
Usman, Jamilu [3 ]
Kulal, Nagendra [1 ]
Tanimu, Gazali [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Refining & Adv Chem, Dhahran 31261, Saudi Arabia
[2] Univ Teknol Malaysia, Fac Chem & Energy Engn, UTM, Johor Baharu 81310, Malaysia
[3] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Membranes & Water Secur, Dhahran 31261, Saudi Arabia
关键词
Carbon/g-C; 3; N; 4; nanocomposite; Glucose; Production of CO and CH 4; CO2; reduction; GRAPHITIC CARBON NITRIDE; TUNABLE BAND-STRUCTURE; NANOSHEETS; G-C3N4; PERFORMANCE; CAPTURE;
D O I
10.1016/j.jphotochem.2023.115272
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fabrication of glucose precursor carbon-doped g-C3N4 nanocomposite (C/g-C3N4) for enhancing photocatalytic CO2 reduction into syngas (CO, CH4) has been investigated. The samples were successfully synthesized via a twostep thermal treatment and tested in a fixed bed reactor under visible light. The 0.2 % glucose precursor carbondoped over g-C3N4 photocatalyst has demonstrated excellent activity in converting CO2 to CO and CH4 under visible light. The main product yield, CO of 898.9 mu mol g-cat  1 was produced over 0.2 % C/g-C3N4, which is 4.6 folds the amount of CO obtained over the g-C3N4 (196.8 mu mol g-cat  1). The XPS results confirmed the formation of a C-O-C bond between carbon and g-C3N4, resulting in a strong interaction between carbon and g-C3N4. Carbon-doped g-C3N4 possesses a narrow energy band and the ability to effectively absorb solar light, which enables efficient transportation of electrons generated by photon excitation. Possible reaction mechanisms for photoreduction of CO2 over carbon-doped g-C3N4 photocatalyst were proposed in order to understand the movement of electrons and holes. This work provides a simple method for designing highly efficient carbonbased photocatalysts for potential application in photocatalytic CO2 reduction using solar energy.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Photocatalytic CO2 Reduction over g-C3N4 Based Materials
    Cai, Wei-Qin
    Zhang, Feng-Jun
    Kong, Cui
    Kai, Chun-Mei
    Oh, Won-Chun
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2020, 30 (11): : 581 - 588
  • [42] NiO/g-C3N4 quantum dots for photocatalytic CO2 reduction
    Tao, Feifei
    Dong, Yali
    Yang, Lingang
    APPLIED SURFACE SCIENCE, 2023, 638
  • [43] g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction
    Sun, Zhuxing
    Wang, Haiqiang
    Wu, Zhongbiao
    Wang, Lianzhou
    CATALYSIS TODAY, 2018, 300 : 160 - 172
  • [44] Construction of NiO/g-C3N4 p-n heterojunctions for enhanced photocatalytic CO2 reduction
    Wang, Linxia
    Dong, Yali
    Zhang, Jiayan
    Tao, Feifei
    Xu, Jingjing
    JOURNAL OF SOLID STATE CHEMISTRY, 2022, 308
  • [45] Mesoporous TiO2/g-C3N4 Microspheres with Enhanced Visible-Light Photocatalytic Activity
    Wei, Hao
    McMaster, William A.
    Tan, Jeannie Z. Y.
    Cao, Lu
    Chen, Dehong
    Caruso, Rachel A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (40): : 22114 - 22122
  • [46] Growth of g-C3N4 Layer on Commercial TiO2 for Enhanced Visible Light Photocatalytic Activity
    Fu, Min
    Liao, Jiazhen
    Dong, Fan
    Li, Hongmei
    Liu, Hongyan
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [47] Photocatalytic reduction of (CO2) over a hybrid photocatalyst composed of (WO3) and graphitic carbon nitride (g-C3N4) under visible light
    Ohno, Teruhisa
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [48] Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light
    Ohno, Teruhisa
    Murakami, Naoya
    Koyanagi, Takahiro
    Yang, Yin
    JOURNAL OF CO2 UTILIZATION, 2014, 6 : 17 - 25
  • [49] Systematically designed g-C3N4/rGO/MoS2 nanocomposite for enhanced photocatalytic performance
    Sardar, Waseem
    Ali, Gohar
    Jiang, Fengchun
    Nawaz, Ahmad
    Khan, Salman
    Zubair, Muhammad
    Awan, Dawar
    Iqbal, Mahmood
    Park, Tae Joo
    CURRENT APPLIED PHYSICS, 2024, 57 : 42 - 48
  • [50] Remarkably enhanced photocatalytic activity of ordered mesoporous carbon/g-C3N4 composite photocatalysts under visible light
    Shi, Lei
    Liang, Lin
    Ma, Jun
    Wang, Fangxiao
    Sun, Jianmin
    DALTON TRANSACTIONS, 2014, 43 (19) : 7236 - 7244