Well-designed glucose precursor carbon/g-C3N4 nanocomposite for enhanced visible light photocatalytic CO2 reduction activity

被引:10
|
作者
Bafaqeer, Abdullah [1 ]
Amin, Nor Aishah Saidina [2 ]
Ummer, Aniz Chennampilly [1 ]
Ahmed, Shakeel [1 ]
Al-Qathmi, Ahmed T. [1 ]
Usman, Jamilu [3 ]
Kulal, Nagendra [1 ]
Tanimu, Gazali [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Refining & Adv Chem, Dhahran 31261, Saudi Arabia
[2] Univ Teknol Malaysia, Fac Chem & Energy Engn, UTM, Johor Baharu 81310, Malaysia
[3] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Membranes & Water Secur, Dhahran 31261, Saudi Arabia
关键词
Carbon/g-C; 3; N; 4; nanocomposite; Glucose; Production of CO and CH 4; CO2; reduction; GRAPHITIC CARBON NITRIDE; TUNABLE BAND-STRUCTURE; NANOSHEETS; G-C3N4; PERFORMANCE; CAPTURE;
D O I
10.1016/j.jphotochem.2023.115272
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fabrication of glucose precursor carbon-doped g-C3N4 nanocomposite (C/g-C3N4) for enhancing photocatalytic CO2 reduction into syngas (CO, CH4) has been investigated. The samples were successfully synthesized via a twostep thermal treatment and tested in a fixed bed reactor under visible light. The 0.2 % glucose precursor carbondoped over g-C3N4 photocatalyst has demonstrated excellent activity in converting CO2 to CO and CH4 under visible light. The main product yield, CO of 898.9 mu mol g-cat  1 was produced over 0.2 % C/g-C3N4, which is 4.6 folds the amount of CO obtained over the g-C3N4 (196.8 mu mol g-cat  1). The XPS results confirmed the formation of a C-O-C bond between carbon and g-C3N4, resulting in a strong interaction between carbon and g-C3N4. Carbon-doped g-C3N4 possesses a narrow energy band and the ability to effectively absorb solar light, which enables efficient transportation of electrons generated by photon excitation. Possible reaction mechanisms for photoreduction of CO2 over carbon-doped g-C3N4 photocatalyst were proposed in order to understand the movement of electrons and holes. This work provides a simple method for designing highly efficient carbonbased photocatalysts for potential application in photocatalytic CO2 reduction using solar energy.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Enhancement of photocatalytic performance in CO2 reduction over Mg/g-C3N4 catalysts under visible light irradiation
    Tang, Jun-ying
    Zhou, Wei-guo
    Guo, Rui-tang
    Huang, Chun-ying
    Pan, Wei-guo
    CATALYSIS COMMUNICATIONS, 2018, 107 : 92 - 95
  • [32] Fabrication of trimodal porous silica/g-C3N4 nanotubes for efficient visible light photocatalytic reduction of CO2 to ethanol
    Wang, Yisong
    Jia, He
    Gong, He
    Zhou, Lifeng
    Qiu, Ziyang
    Fang, Xin
    Du, Tao
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [33] G-C3N4/BiVO4 composites with enhanced and stable visible light photocatalytic activity
    Ji, Yuexia
    Cao, Jiafeng
    Jiang, Linqing
    Zhang, Yaohong
    Yi, Zhiguo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 590 : 9 - 14
  • [34] Z-Scheme MoS2/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction
    Qin, Hao
    Guo, Rui-Tang
    Liu, Xing-Yu
    Pan, Wei-Guo
    Wang, Zhong-Yi
    Shi, Xu
    Tang, Jun-Ying
    Huang, Chun-Ying
    DALTON TRANSACTIONS, 2018, 47 (42) : 15155 - 15163
  • [35] Enhanced Photocatalytic CO2 Reduction via CCH/g-C3N4 Heterojunction: Optimizing Charge Carrier Dynamics and Visible-Light Utilization
    Mo, Xinpeng
    Zhong, Hong
    Hu, Chenhuan
    Jin, Haoxiong
    Liu, Xianfeng
    Liu, Huanhuan
    Zhang, Genqiang
    CATALYSTS, 2025, 15 (02)
  • [36] NH2-UiO-66/g-C3N4/CdTe composites for photocatalytic CO2 reduction under visible light
    Yu, Fengyang
    Chen, Liyong
    Shen, Xiaoshuang
    Li, Xuezhao
    Duan, Chunying
    APL MATERIALS, 2019, 7 (10)
  • [37] Quenching induced hierarchical 3D porous g-C3N4 with enhanced photocatalytic CO2 reduction activity
    Liu, Mingjin
    Wageh, S.
    Al-Ghamdi, Ahmed A.
    Xia, Pengfei
    Cheng, Bei
    Zhang, Liuyang
    Yu, Jiaguo
    CHEMICAL COMMUNICATIONS, 2019, 55 (93) : 14023 - 14026
  • [38] Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first-principles study
    Zhang, Jihua
    Ren, Fengzhu
    Deng, Mingsen
    Wang, Yuanxu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (15) : 10218 - 10226
  • [39] Hydrothermal synthesis of g-C3N4/CdWO4 nanocomposite and enhanced photocatalytic activity for tetracycline degradation under visible light
    Huang, Kai
    Hong, Yuanzhi
    Yan, Xu
    Huang, Changyou
    Chen, Jibin
    Chen, Minyuan
    Shi, Weidong
    Liu, Chunbo
    CRYSTENGCOMM, 2016, 18 (34): : 6453 - 6463
  • [40] A review on g-C3N4 for photocatalytic water splitting and CO2 reduction
    Ye, Sheng
    Wang, Rong
    Wu, Ming-Zai
    Yuan, Yu-Peng
    APPLIED SURFACE SCIENCE, 2015, 358 : 15 - 27