Kernel machines with missing covariates

被引:0
|
作者
Liu, Tiantian [1 ]
Goldberg, Yair [1 ]
机构
[1] Technion Israel Inst Technol, Fac Data & Decis Sci, IL-3200003 Haifa, Israel
来源
ELECTRONIC JOURNAL OF STATISTICS | 2023年 / 17卷 / 02期
关键词
Classification; missing covariates; kernel machines; multiple imputation; doubly robust estimators; ESTIMATING INDIVIDUALIZED TREATMENT; CLASSIFICATION; VALUES; REGRESSION;
D O I
10.1214/23-EJS2158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a family of doubly robust kernel machines for classification in the presence of missing covariates. We assume that the missingness is missing at random and the missing pattern is homogeneous over a subset of covariates. First, we construct a novel convex augmented loss function using inverse probability weighting, multiple imputation, and surrogacy. It features (i) the double robustness against misspecification of the missing mechanism or the imputation model, and (ii) computation feasibility via a constrained quadratic optimization. Second, we obtain theoretical results for the proposed kernel machine, which include Fisher consistency, an upper bound of the excess risk, and the rate of convergence. We demonstrate the finite sample performance of the proposed kernel machine through simulation and real data analysis.
引用
收藏
页码:2485 / 2538
页数:54
相关论文
共 50 条
  • [31] Generalised kernel machines
    Cawley, Gavin C.
    Janacek, Gareth J.
    Talbot, Nicola L. C.
    [J]. 2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 1720 - 1725
  • [32] Kernel Factorisation Machines
    Buet-Golfouse, Francois
    Utyagulov, Islam
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1755 - 1760
  • [33] Assessing risk model calibration with missing covariates
    Shin, Yei Eun
    Gail, Mitchell H.
    Pfeiffer, Ruth M.
    [J]. BIOSTATISTICS, 2022, 23 (03) : 875 - 890
  • [34] Some results on classifier selection with missing covariates
    Mojirsheibani, Majid
    [J]. METRIKA, 2012, 75 (04) : 521 - 539
  • [35] Balancing continuous covariates based on Kernel densities
    Ma, Zhenjun
    Hu, Feifang
    [J]. CONTEMPORARY CLINICAL TRIALS, 2013, 34 (02) : 262 - 269
  • [36] Kernel Conjugate Gradient for Fast Kernel Machines
    Ratliff, Nathan D.
    Bagnell, J. Andrew
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 1017 - 1022
  • [37] Handling Missing Covariates in Conditional Mixture Models Under Missing at Random Assumptions
    Sterba, Sonya K.
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2014, 49 (06) : 614 - 632
  • [38] Missing data, part 4. Missing data in the outcomes vs in the covariates
    Pham, Tra My
    Pandis, Nikolaos
    White, Ian R.
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2022, 162 (03) : 432 - 433
  • [39] A Bayesian Structural Equations Model for Multilevel Data with Missing Responses and Missing Covariates
    Das, Sonali
    Chen, Ming-Hui
    Kim, Sungduk
    Warren, Nicholas
    [J]. BAYESIAN ANALYSIS, 2008, 3 (01): : 197 - 224
  • [40] Missing data in kernel PCA
    Sanguinetti, Guido
    Lawrence, Neil D.
    [J]. MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 751 - 758