Preface to the theme issue 'physics-informed machine learning and its structural integrity applications'

被引:0
|
作者
Zhu, Shun-Peng [1 ]
De Jesus, Abilio M. P. [2 ]
Berto, Filippo [3 ]
Michopoulos, John G. [4 ]
Iacoviello, Francesco [5 ]
Wang, Qingyuan [6 ,7 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Porto, INEGI, Fac Engn, P-4200465 Porto, Portugal
[3] Sapienza Univ Rome, Dept Chem Engn Mat & Environm, I-00184 Rome, Italy
[4] Naval Res Lab, Computat Multiphys Syst Lab, Ctr Mat Phys & Technol, Washington, DC 20375 USA
[5] Univ Cassino & Southern Lazio, Dept Civil & Mech Engn, Cassino, Italy
[6] Sichuan Univ, Coll Architecture & Environm, MOE Key Lab Deep Earth Sci & Engn, Chengdu 610065, Peoples R China
[7] Chengdu Univ, Adv Res Inst, Chengdu 610106, Peoples R China
关键词
machine learning; physics-informed machine learning; structural integrity; failure mechanism modelling; prognostic and health management; RELIABILITY ASSESSMENT; FATIGUE LIFE; FRAMEWORK; BEHAVIOR; SYSTEMS;
D O I
10.1098/rsta.2023.0176
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The issue focuses on physics-informed machine learning and its applications for structural integrity and safety assessment of engineering systems/facilities. Data science and data mining are fields in fast development with a high potential in several engineering research communities; in particular, advances in machine learning (ML) are undoubtedly enabling significant breakthroughs. However, purely ML models do not necessarily carry physical meaning, nor do they generalize well to scenarios on which they have not been trained on. This is an emerging field of research that potentially will raise a huge impact in the future for designing new materials and structures, and then for their proper final assessment. This issue aims to update the current research state of the art, incorporating physics into ML models, and providing tools when dealing with material science, fatigue and fracture, including new and sophisticated algorithms based on ML techniques to treat data in real-time with high accuracy and productivity.This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 1)'.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems
    Nghiem, Truong X.
    Drgona, Jan
    Jones, Colin
    Nagy, Zoltan
    Schwan, Roland
    Dey, Biswadip
    Chakrabarty, Ankush
    Di Cairano, Stefano
    Paulson, Joel A.
    Carron, Andrea
    Zeilinger, Melanie N.
    Cortez, Wenceslao Shaw
    Vrabie, Draguna L.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3735 - 3750
  • [42] A review of physics-informed machine learning for building energy modeling
    Ma, Zhihao
    Jiang, Gang
    Hu, Yuqing
    Chen, Jianli
    APPLIED ENERGY, 2025, 381
  • [43] Physics-Informed Machine Learning-An Emerging Trend in Tribology
    Marian, Max
    Tremmel, Stephan
    LUBRICANTS, 2023, 11 (11)
  • [44] Wind Farm Modeling with Interpretable Physics-Informed Machine Learning
    Howland, Michael F.
    Dabiri, John O.
    ENERGIES, 2019, 12 (14)
  • [45] Unit Operation and Process Modeling with Physics-Informed Machine Learning
    Li, Haochen
    Spelman, David
    Sansalone, John
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2024, 150 (04)
  • [46] Physics-Informed Machine Learning for Inverse Design of Optical Metamaterials
    Sarkar, Sulagna
    Ji, Anqi
    Jermain, Zachary
    Lipton, Robert
    Brongersma, Mark
    Dayal, Kaushik
    Noh, Hae Young
    ADVANCED PHOTONICS RESEARCH, 2023, 4 (12):
  • [47] Discovering nonlinear resonances through physics-informed machine learning
    Barmparis, G. D.
    Tsironis, G. P.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2021, 38 (09) : C120 - C126
  • [48] Physics-informed machine learning of the correlation functions in bulk fluids
    Chen, Wenqian
    Gao, Peiyuan
    Stinis, Panos
    PHYSICS OF FLUIDS, 2024, 36 (01)
  • [49] Physics-informed machine learning in asymptotic homogenization of elliptic equations
    Soyarslan, Celal
    Pradas, Marc
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 427
  • [50] Physics-Informed Graph Learning
    Peng, Ciyuan
    Xia, Feng
    Saikrishna, Vidya
    Liu, Huan
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 732 - 739