Preface to the theme issue 'physics-informed machine learning and its structural integrity applications'

被引:0
|
作者
Zhu, Shun-Peng [1 ]
De Jesus, Abilio M. P. [2 ]
Berto, Filippo [3 ]
Michopoulos, John G. [4 ]
Iacoviello, Francesco [5 ]
Wang, Qingyuan [6 ,7 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Porto, INEGI, Fac Engn, P-4200465 Porto, Portugal
[3] Sapienza Univ Rome, Dept Chem Engn Mat & Environm, I-00184 Rome, Italy
[4] Naval Res Lab, Computat Multiphys Syst Lab, Ctr Mat Phys & Technol, Washington, DC 20375 USA
[5] Univ Cassino & Southern Lazio, Dept Civil & Mech Engn, Cassino, Italy
[6] Sichuan Univ, Coll Architecture & Environm, MOE Key Lab Deep Earth Sci & Engn, Chengdu 610065, Peoples R China
[7] Chengdu Univ, Adv Res Inst, Chengdu 610106, Peoples R China
关键词
machine learning; physics-informed machine learning; structural integrity; failure mechanism modelling; prognostic and health management; RELIABILITY ASSESSMENT; FATIGUE LIFE; FRAMEWORK; BEHAVIOR; SYSTEMS;
D O I
10.1098/rsta.2023.0176
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The issue focuses on physics-informed machine learning and its applications for structural integrity and safety assessment of engineering systems/facilities. Data science and data mining are fields in fast development with a high potential in several engineering research communities; in particular, advances in machine learning (ML) are undoubtedly enabling significant breakthroughs. However, purely ML models do not necessarily carry physical meaning, nor do they generalize well to scenarios on which they have not been trained on. This is an emerging field of research that potentially will raise a huge impact in the future for designing new materials and structures, and then for their proper final assessment. This issue aims to update the current research state of the art, incorporating physics into ML models, and providing tools when dealing with material science, fatigue and fracture, including new and sophisticated algorithms based on ML techniques to treat data in real-time with high accuracy and productivity.This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 1)'.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Physics-Informed Machine Learning for metal additive manufacturing
    Farrag, Abdelrahman
    Yang, Yuxin
    Cao, Nieqing
    Won, Daehan
    Jin, Yu
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (01) : 171 - 185
  • [32] Physics-Informed Transfer Learning for Process Control Applications
    Arce Munoz, Samuel
    Pershing, Jonathan
    Hedengren, John D.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024,
  • [33] Integrating physics-informed machine learning with resonance effect for structural dynamic performance modeling
    Zhang, Jiaxin
    Lei, Xiaoming
    Chan, Pak-wai
    Dong, You
    JOURNAL OF BUILDING ENGINEERING, 2024, 84
  • [34] Physics-informed machine learning for dry friction and backlash modeling in structural control systems
    Coble, Daniel
    Cao, Liang
    Downey, Austin R. J.
    Ricles, James M.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 218
  • [35] Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges
    Xu, Yanwen
    Kohtz, Sara
    Boakye, Jessica
    Gardoni, Paolo
    Wang, Pingfeng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [36] Physics-informed machine learning: A comprehensive review on applications in anomaly detection and condition monitoring
    Wu, Yuandi
    Sicard, Brett
    Gadsden, Stephen Andrew
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [37] Physics-informed machine learning models for ship speed prediction
    Lang, Xiao
    Wu, Da
    Mao, Wengang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [38] Physics-Informed Machine Learning Improves Detection of Head Impacts
    Raymond, Samuel J.
    Cecchi, Nicholas J.
    Alizadeh, Hossein Vahid
    Callan, Ashlyn A.
    Rice, Eli
    Liu, Yuzhe
    Zhou, Zhou
    Zeineh, Michael
    Camarillo, David B.
    ANNALS OF BIOMEDICAL ENGINEERING, 2022, 50 (11) : 1534 - 1545
  • [39] Physics-informed machine learning model for bias temperature instability
    Lee, Jonghwan
    AIP ADVANCES, 2021, 11 (02)
  • [40] Physics-Informed Machine Learning Improves Detection of Head Impacts
    Samuel J. Raymond
    Nicholas J. Cecchi
    Hossein Vahid Alizadeh
    Ashlyn A. Callan
    Eli Rice
    Yuzhe Liu
    Zhou Zhou
    Michael Zeineh
    David B. Camarillo
    Annals of Biomedical Engineering, 2022, 50 : 1534 - 1545